## **ORAL PRESENTATION**

Open Access

# Left ventricular mass by cardiac magnetic resonance imaging and adverse cardiovascular outcomes in patients treated with anthracycline-based chemotherapy

Tomas G Neilan<sup>1,2\*</sup>, Diego Pena-Herrera<sup>2</sup>, Otavio R Coelho-Filho<sup>2</sup>, Michael Jerosch-Herold<sup>3</sup>, Javid Moslehi<sup>2</sup>, Raymond Kwong<sup>2</sup>

From 15th Annual SCMR Scientific Sessions Orlando, FL, USA. 2-5 February 2012

### **Summary**

LV mass by CMR is a powerful predictor of adverse cardiovascular outcomes in patients treated with anthracyclines.

### **Background**

Late gadolinium enhancement (LGE) is a predictor of adverse outcomes in patients. However, limited data exist on the role of LGE, the characteristic CMR findings, and the prognostic variables in patients who develop a cardiomyopathy after treatment with anthracyclines.

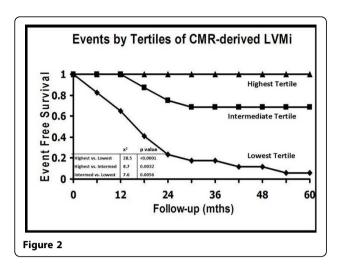
### **Methods**

LGE-CMR imaging was performed in patients with stage B and C heart failure after anthracycline-based chemotherapy. We assessed the association between CMR, EKG, echocardiographic, serum, and clinical variables with adverse outcomes (cardiovascular death and admission for heart failure).

### Results

We performed a clinically-indicated CMR study on 50 patients (52% male, mean age of  $49 \pm 16$  years, anthracy-cline dose of  $286 \pm 89$  mg/m2, and ejection fraction of  $38 \pm 9\%$ ) with AC-mediated cardiomyopathy. Patients presented a median of 45 months after chemotherapy and were followed for a median period of 28 months. LGE was an uncommon finding (3 patients, 6%). There was a

strong inverse association between anthracycline dose and indexed left ventricular mass by CMR (r = -.75, p < 0.001, Figure 1). In univariate analysis, indexed LV-mass by CMR demonstrated the strongest unadjusted association with adverse events (hazard ratio: 0.75, chi-squared 26.2, p < 0.001). In a multivariable model, indexed LV-mass demonstrated the strongest association with the primary outcome (Figure 2).


### **Conclusions**

Residual LV-mass measured by CMR is a powerful predictor of subsequent adverse cardiovascular events in patients with anthracycline-induced cardiotoxicity.

<sup>1</sup>Medicine, Massachusetts General Hospital, Boston, MA, USA Full list of author information is available at the end of the article



<sup>90</sup> CMR-derived LVMi vs. AC Dose
80 70 60 60 50 40 70 50 150 250 350 450 550 DOX dose (mg/m²)
Figure 1



### **Funding**

Dr. Neilan is supported by an NIH T32 Training Grant (T32HL09430101A1).

### **Author details**

<sup>1</sup>Medicine, Massachusetts General Hospital, Boston, MA, USA. <sup>2</sup>Medicine, Brigham and Women's Hospital, Boston, MA, USA. <sup>3</sup>Radiology, Brigham and Women's Hospital, Boston, MA, USA.

Published: 1 February 2012

### doi:10.1186/1532-429X-14-S1-O30

Cite this article as: Neilan et al.: Left ventricular mass by cardiac magnetic resonance imaging and adverse cardiovascular outcomes in patients treated with anthracycline-based chemotherapy. Journal of Cardiovascular Magnetic Resonance 2012 14(Suppl 1):O30.

# Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

Submit your manuscript at www.biomedcentral.com/submit

