

POSTER PRESENTATION

High intensity signal on MIP images from routine TOF-MRA of carotid atherosclerotic plaque indicates higher volume of intraplaque hemorrhage and lipid rich necrotic core

Kiyofumi Yamada^{1*}, Yan Song², Jie Sun¹, Li Dong¹, Dongxiang Xu¹, Daniei S Hippe¹, Marina S Ferguson¹, Baocheng Chu¹, Thomas S Hatsukami^{3,1}, Min Chen², Cheng Zhou², Chun Yuan¹

From 15th Annual SCMR Scientific Sessions Orlando, FL, USA. 2-5 February 2012

Background

Carotid intraplaque haemorrhage (IPH) and lipid rich necrotic core (LRNC) have been associated with accelerated plaque growth, luminal narrowing, future surface disruption and development of symptomatic events. It has also been reported that unstable plaque which contains LRNC or IPH is associated with an increased number of emboli after carotid artery stenting. Therefore, a simple screening method to detect these components in the plaque is needed. Maximum intensity projection (MIP) images from time-of-flight MR angiography (TOF-MRA) are widely and routinely used for screening carotid artery stenosis. This study examined whether high-intensity signal (HIS) in the plaque on MIP images from routine TOF-MRA could quantify IPH.

Methods

Seventy six patients with a diagnosis of carotid artery stenosis underwent carotid MR imaging. Two experienced reviewers first assessed the presence of HIS in the plaque on MIP images from TOF-MRA and then, blinded to the results, assessed plaque component volumes (IPH, LRNC, Fibrous tissue and Calcification volume) on multicontrast cross sectional MRI using a specialized software suite for plaque analysis.

Results

Eight carotid plaques produced HIS in the plaque on MIP images from TOF-MRA. In the HIS-positive plaque

¹Radiology, University of Washington, Seattle, WA, USA

Full list of author information is available at the end of the article

group (P group; n=8), IPH volume and LRNC volume were significantly higher than those in the HIS negative group (N group; n=68) (IPH; 142.8±97.7mm3 vs 13.4 ±36.1 mm3, P<0.001. LRNC; 379.8±203.4 mm3 vs 106.4 ±122.1 mm3, p<0.001). There were no differences in the fibrous tissue and calcification volume between the P and N groups.

Conclusions

Our results strongly suggest an association between the presence of carotid LRNC with IPH and HIS on MIP images from TOF-MRA. TOF-MRA is routinely used in atherosclerosis screening and the validation of high signal on MIP images has created a valuable tool in the assessment of carotid plaque vulnerability.

Funding

None.

Author details

¹Radiology, University of Washington, Seattle, WA, USA. ²Radiology, Beijing Hospital, Beijing, China. ³Surgery, University of Washington, Seattle, WA, USA.

Published: 1 February 2012

doi:10.1186/1532-429X-14-S1-P133 Cite this article as: Yamada *et al.*: High intensity signal on MIP images from routine TOF-MRA of carotid atherosclerotic plaque indicates higher volume of intraplaque hemorrhage and lipid rich necrotic core. *Journal of Cardiovascular Magnetic Resonance* 2012 14(Suppl 1):P133.

© 2012 Yamada et al; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

