

WALKING POSTER PRESENTATION

## **Open Access**

# Whole-heart, free-breathing, three-dimensional myocardial BOLD MRI at 3T with simultaneous <sup>13</sup>N-ammonia PET in canines

Hsin-Jung Yang<sup>1\*</sup>, Damini Dey<sup>1</sup>, Jane Sykes<sup>2</sup>, John Butler<sup>2</sup>, Avinash Kali<sup>1</sup>, Ivan Cokic<sup>1</sup>, Behzad Sharif<sup>1</sup>, Debiao Li<sup>1</sup>, Sotirios Tsaftaris<sup>3</sup>, Piotr Slomka<sup>1</sup>, Frank S Prato<sup>2</sup>, Rohan Dharmakumar<sup>1</sup>

*From* 18th Annual SCMR Scientific Sessions Nice, France. 4-7 February 2015

### Background

Myocardial BOLD MRI is an emerging non-contrast approach for the assessment of ischemic heart disease. However, current BOLD CMR methods (T2-weighted, T2\*-weighted or bSSFP) are limited by poor spatial coverage and image artifacts (e.g. coil bias, B1 and B0 inhomogeneities). To address these limitations, we developed a fast, free breathing 3D T2 mapping technique at 3T that utilizes near 100% imaging efficiency. This quantitative BOLD approach, which can be performed within 5 minutes, permits full LV coverage during adenosine stress. In this study, we tested our approach in a canine model and validated our findings with simultaneously acquired <sup>13</sup>Nammonia PET perfusion data in a clinical PET-MR system.

#### Methods

Mongrel dogs (n=3) were studied with a state of the art PET-MR system (Biograph mMR, Siemens Healthcare, Germany). After scouting and whole-heart shimming, fast 3D free-breathing T2 mapping sequence were prescribed at rest and under adenosine stress (140 mg/min/kg) with the following scan parameters: TR/TE =3.4/1.7 ms, flip angle = 15°, imaging resolution = 2 x 2 x 6 mm<sup>3</sup> with 14 partitions, adiabatic T2 prep pulses (with T2 durations of 0, 24 and 55 ms) every other heart beat. Total acquisition time for whole LV coverage was 5 mins. For validation, dynamic <sup>13</sup>N-ammonia PET scans were acquired along with MR data. PET images were analyzed using qPET (Cedars-Sinai Medical Center, US). Epi and endo-cardial contours were used to segment the myocardium and

<sup>1</sup>Cedars Sinai Medical Center, Los Angeles, CA, USA

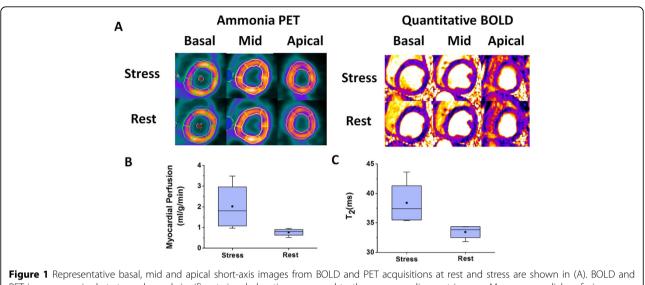
mean myocardial T2 (T2avg) values were measured from basal, mid and apical slices at rest and adenosine stress. The corresponding slices were matched to <sup>13</sup>N-ammonia PET images and mean myocardial perfusion (Qavg) values were measured. Myocardial BOLD reserve (T2avg (stress): T2avg(rest)) and perfusion reserve (T2avg (stress):T2avg (rest)) were computed on a slice basis and regressed.

#### Results

A representative set of BOLD and PET images acquired from a canine under rest and adenosine stress are collected in Fig. 1. T2avg values measured under adenosine stress were significantly higher than at rest (T2avg: 33.5  $\pm$ 1.0 ms (rest) vs. 38.4 $\pm$ 3.1 ms (stress), p<0.05)). As expected, Qavg values were significantly higher during adenosine stress relative to rest (Qavg: 0.8 $\pm$ 0.1 ml/mg/min (rest) vs 2.0 $\pm$ 0.9 ml/mg/min (stress); p<0.05). Linear regression of BOLD and perfusion reserves showed high correlation (R<sup>2</sup>=0.67, p<0.05).

#### Conclusions

The proposed fast 3D free breathing T2 mapping at 3T permits whole LV assessment of BOLD changes between rest and adenosine stress. The BOLD responses were very closely correlated with PET perfusion, suggesting that the proposed BOLD CMR method is a viable approach for imaging myocardial perfusion. Further studies are required to examine its utility in the setting of ischemic heart disease.


#### Funding

This work was supported in part by National Heart, Lung, and Blood Institute HL091989.The content is solely the responsibility of the authors and does not necessarily



© 2015 Yang et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http:// creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Full list of author information is available at the end of the article



PET images acquired at stress showed significant signal elevation compared to the corresponding rest images. Mean myocardial perfusion (Qavg) and BOLD (T2avg) measured from matched slices at rest and stress are shown in (B) and (C), respectively. Qavg during adenosine stress was significantly higher than at rest (B). Similar results were observed for BOLD (C).

#### represent the official views of the National Heart, Lung, And Blood Institute or the National Institutes of Health.

#### Authors' details

<sup>1</sup>Cedars Sinai Medical Center, Los Angeles, CA, USA. <sup>2</sup>Lawson Health Research Institute, London, ON, Canada. <sup>3</sup>IMT Institute for Advanced Studies Lucca, Lucca, Italy.

Published: 3 February 2015

doi:10.1186/1532-429X-17-S1-Q126 Cite this article as: Yang *et al*: Whole-heart, free-breathing, threedimensional myocardial BOLD MRI at 3T with simultaneous <sup>13</sup>Nammonia PET in canines. *Journal of Cardiovascular Magnetic Resonance* 2015 17(Suppl 1):Q126.

# Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

Submit your manuscript at www.biomedcentral.com/submit

**BioMed** Central