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Abstract

Cardiovascular magnetic resonance (CMR) is currently the gold standard for assessing both global
and regional myocardial function. New tools for quantifying regional function have been recently
developed to characterize early myocardial dysfunction in order to improve the identification and
management of individuals at risk for heart failure. Of particular interest is CMR myocardial tagging,
a non-invasive technique for assessing regional function that provides a detailed and comprehensive
examination of intra-myocardial motion and deformation. Given the current advances in gradient
technology, image reconstruction techniques, and data analysis algorithms, CMR myocardial tagging
has become the reference modality for evaluating multidimensional strain evolution in the human
heart. This review presents an in depth discussion on the current clinical applications of CMR
myocardial tagging and the increasingly important role of this technique for assessing subclinical
myocardial dysfunction in the setting of a wide variety of myocardial disease processes.

Introduction

Heart failure (HF) is the result of advanced myocardial
dysfunction and continues to be a leading cause of mor-
bidity and mortality in developed nations. In the United
States alone, an estimated 5.3 million adults carry the
diagnosis of HF and the disease prevalence continues to
escalate with aging of the population. In addition to con-
ferring a significant burden of illness to affected individu-
als, management of HF also imposes enormous expense
to the health care system [1]. Therefore, the ability to iden-
tify individuals at risk for developing HF - those who
might benefit from targeted preventive interventions -
would be of immense value.

To this end, some of the most promising approaches to
improved risk stratification involve using imaging modal-

ities to detect early myocardial dysfunction. Assessment of
global ventricular function - and its reduced indices, such
as ejection fraction, are clearly strong predictors of future
HF and poor prognosis. However, global measures are
insensitive to reductions in regional performance, where
even a normal ejection fraction can obscure significant
underlying regional dysfunction. Thus, measures of
regional function, such as quantification of myocardial
strain and torsion, have emerged as more accurate tools
for defining degrees of myocardial disease. Abnormalities
in these measures of regional function can also serve as a
more specific marker of subclinical myocardial dysfunc-
tion. Several techniques have been used to quantify
regional myocardial function. Nuclear techniques [2] can
provide information on global and regional wall motion
but with limited spatial and temporal resolution. Tissue
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Doppler imaging [3]and Speckle tracking [4] are two
novel echocardiographic techniques that have been intro-
duced for strain quantification. While both techniques
have demonstrated promising potential for bedside
regional function assessment at a high temporal resolu-
tion (> 250 frames/second), acquisition angle and opera-
tor dependence must be kept in mind while using these
techniques.

Currently, cardiovascular magnetic resonance (CMR) tag-
ging remains the reference standard for assessment of
regional function [5]. It remains the most widely vali-
dated reproducible tool for multi-dimensional strain
quantification.

Techniques for Myocardial Tissue Tagging

Quantifying regional myocardial function, or regional
deformation, originally required invasive surgical implan-
tation of physical markers within the myocardium itself
and then tracking their motion using external imaging.
However, this method is impractical for clinical applica-
tion and implanted markers tend to influence cardiac
motion and thus distort the accuracy of measurements
[6].In 1988, Zerhouni et al. [7] introduced a magnetic res-
onance based noninvasive imaging method for tracking
myocardial motion: myocardial tissue tagging. Noninva-
sive markers, known as tags, are created within the tissue
by locally induced perturbations of the magnetization
with selective radiofrequency saturation of multiple, thin
tag planes in a plane perpendicular to the imaging plane

Figure |
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prior to image acquisition. These perturbations then pro-
duce regions of reduced signal intensity that appear as
dark lines in the acquired images [8]. Building upon this
technique, Axel and Dougherty [9] then developed spatial
modulation of magnetization (SPAMM) to allow the
application of tags in two orthogonal directions that,
combined, form a grid of sharp intrinsic tissue markers.

Initially designed to analyze myocardial contraction dur-
ing systole, tags are typically created upon detection of the
QRS complex of the electrocardiogram (ECG). The result-
ing tags then follow myocardial motion during the cardiac
cycle, thus reflecting the underlying myocardial deforma-
tion (Figure 1). See additional file 1: Movie 1 demonstrating
myocardial tagging covering the cardiac cycle. However, fad-
ing of the tag lines close to end-diastole, as a result of T1
tissue relaxation, has limited its application to the systolic
part of the cardiac cycle. Although spoiled gradient echo
imaging is the commonly used sequence for tag genera-
tion at the widely available 1.5T magnets, recent studies
[10,11] have proposed implementing steady state free pre-
cession (SSFP) to achieve better contrast and longer tag
persistence. Using high field strength magnets for tagging
acquisition may also reduce the problem of tag fading. In
fact, despite the potential increase in susceptibility effects
during cardiac imaging, applying myocardial tagging at
higher field strength appears to provide a better contrast
to noise ratio (CNR) as well as improve tag persistence.
This could be attributed to a higher baseline signal to
noise ratio (SNR) provided by 3T systems and prolonga-

Short axis tagging at the mid ventricular level covering the cardiac cycle (A-F). Tagging is applied upon detection of
QRS complex at end diastole (A). Tag lines follow the myocardial deformation during systole (B, C, and D) and relax in diastole
(E, F). Fading of tag lines occurs near end diastole (F) due to T| tissue relaxation.
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tion of myocardial T1, thus improving the contrast
between the tissue and the taglines at end-diastole (Figure
2) [12]. Providing persistent tags allows quantification of
cardiac strain evolution during late diastole, which can be
used to assess diastolic myocardial dysfunction. Moreo-
ver, using the multi-planar capabilities of CMR, tag lines
can be applied in the short or long axis cardiac planes to
facilitate sophisticated three dimensional (3D) strain
analysis.

In addition, current advances in gradient technology and
acquisition techniques have greatly improved tagging
temporal resolution. Currently, the most widely feasible
temporal resolution is on the order of 15 - 20 msec, which
is sufficient to detect peak systolic strain, the most exten-
sively reported value in most clinical settings. However, a
high temporal resolution actually becomes a critical issue
especially when studying specific phases of the cardiac
cycle that are characterized by rapid cardiac motion like
the early diastolic filling phase in diastolic dysfunction,
the early systolic emptying phase in conduction abnor-
malities as well as stress induced wall motion abnormali-
ties [8]. Recently, parallel imaging techniques, such as
simultaneous acquisition of spatial harmonics (SMASH)
[13] and sensitivity encoding (SENSE) [14] have been
proposed for speeding up the image acquisition. SENSE is
the most widespread parallel imaging technique. Scan
time reduction in SENSE benefits cardiac imaging leading
to reduced breath-hold durations, or increased spatial res-
olution for a given breath-hold duration [8].

1.5T

3T

Figure 2
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Image Analysis

Although the tag line deformation in cine display can be
followed and analyzed visually, this approach is subjec-
tive and limited by image quality. Therefore, quantitative
analysis is preferred. Motion quantification techniques
are divided into: a) differential optical flow-based meth-
ods that track motion by assessment of the temporal and
spatial changes of image intensity; b) tag segmentation
methods based on tracking of tag lines as in Findtags [15]
and SPAMMVU [16] analysis; and, c¢) phase-based analy-
sis methods which are the bases for Harmonic phase
(HARP) analysis [17]. HARP analysis is currently the most
widely used method for strain quantification since it is
highly automated and, thus, limits both analysis time and
subjective interference. Each tagging image is decom-
posed into a harmonic magnitude and a harmonic phase.
The HARP method analyzes the motion in the tagging
data by filtering the harmonic peaks in the frequency
domain of the image. It computes a displacement map of
the tag lines by tracking their phase changes through time.
HARP can, thus, track the motion of a single point or of a
whole myocardial segment (by taking the average of mul-
tiple adjacent points) through time to generate a dense
regional dynamic color strain map throughout the cardiac
cycle [18,19]See additional file 2: Movie 2 demonstrating
color coded strain analysis of the tagged left ventricle using
HARP; x-coordinate represents time frames, y-coordinate repre-
sents percent circumferential shortening (% E_,).

1.5 and 3T mid ventricular short axis tagging covering the cardiac cycle (F1-F4). Note better tag-tissue contrast

and longer tag persistence (F4) on 3T MRI system.
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With the rising interest in computing 3D myocardial
deformation maps, several techniques based on CMR tag-
ging have been developed to quantify 3D strain through
the acquisition of multiple orthogonal slices covering the
whole volume of interest. The proposed methods used
various 3D model-based approaches to reconstruct the 3D
motion of the left ventricle (LV) from tagging images
[6,20-22]. However, these methods predisposed to
patient discomfort due to multiple breath holds required
for data acquisition, in addition to image mis-registration
caused by patient motion as well as heart rate variability
from one slice to the other.

Measurement of Deformation

Within the LV, the myofiber arrangement changes gradu-
ally from a right-handed helix in the subendocardium to
a left-handed helix in the subepicardium, passing by a cir-
cumferential arrangement in the mid wall. Such complex
fiber architecture results in complex patterns of deforma-
tion and changes in shape that are produced upon muscle
contraction or relaxation [23]. Tagging analysis allows
quantification of these multiplanar regional deformations
and, in turn, offers a dynamic multidimensional measure
of myocardial function.

Strain

Each element of strain is, simply, a measurement of the
fractional or the percent change of length in a specific
direction where L, is the original fiber length before tag
deformation and L is the current length.

. L-L
Strain = 0

0

In 3D space, myocardial strain can be represented by two
different coordinate systems: 1) The radial-fiber-crossfiber
coordinate system, which is based on the fiber direction
within the myocardial tissue and thus, requires a precise
knowledge of fiber orientation angles [24], and 2) the
radial-circumferential-longitudinal (RCL) coordinate sys-
tem. In the later, circumferential strain (E..) describes cir-
cumferential shortening in the short axis plane in a
direction tangential to the epicardial surface; radial strain
(Egg) describes myocardial thickening in a radial direction
towards the center of the ventricle; and, longitudinal
strain (E;;) represents base to apical shortening along the
ventricular long axis. The RCL coordinate system is based
on the cardiac geometry and, thus, is more convenient for
clinical purposes [25].

In the RCL coordinate system, Eqq, Egg, and E;; represent
the normal strain elements of myocardial deformation in
3D space, whereas Ep. Ep;, and E represent strain
changes that occur in a plane between two of these three
initially orthogonal normal directions known as shear

http://www.jcmr-online.com/content/11/1/55

strains [26]. The later component, E.;, represents the
shear in the circumferential - longitudinal plane and is
usually referred to as torsion (Figure 3).

Principal strains represent the maximum and minimum
deformation occurring at a point in three orthogonal
directions irrespective of cardiac geometry 1) E,, referred
to as the maximum principal strain, represents the greatest
elongation; 2) E,, the minimum principal strain, repre-
sents the greatest shortening; and, 3) E; represents the
strain occurring perpendicular to E; and E, Principal
strains have been used in tagging studies [27] and have the
advantage of representing the complex material deforma-
tion state regardless of cardiac geometry and the selected
coordinate system. Similarly, the angles between the prin-
cipal strain directions and the RCL coordinates have also
been quantified: o represents the angle between E, and
Ecc; B represents the angle between E; and Egg [26].

Strain Rate
Strain rate (SR) represents the time derivative of strain val-
ues or, in other words, strain changes per unit time. Strain

Figure 3

Schematic diagram demonstrating the three dimen-
sional circumferential - radial - longitudinal (RCL)
coordinate system used for strain calculation. Normal
strains (dark solid arrows) are described with respect to the
short axis plane: E.. represents circumferential shortening
tangential to epicardial surface, Egg represents myocardial
thickening radially towards the center of the ventricle and E;;
represents basal to apical shortening along the ventricular
long axis.Egc, Eg and E; (dotted and curved arrows) repre-
sent change in angle caused by shear. Torsion represents the
wringing motion caused by an apical counterclockwise rota-
tion (curved arrow A) and a basal clockwise rotation (curved
arrow B) around the ventricular long axis at end systole.
Torsional deformation compensates for the opposing vec-
tors in the subepicardium and subendocardium created by
opposing myofiber arrangement in both layers.
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rate is calculated by taking the change in strain (S)
between two time frames and dividing this by the time (t)
difference between these two frames:

_St1375n
SR, =
t2-11
Using strain rate analysis for evaluation of LV diastolic
function, Edvardsen et al. 28], revealed significant reduc-
tion of regional diastolic strain rate, reflecting regional
diastolic dysfunction, among individuals with asympto-
matic LV hypertrophy compared to healthy controls.

Torsion

During the systolic phase of each cardiac cycle, the con-
tracting myofibers exert a wringing motion that assists in
ejecting blood from the LV [24]. This wringing motion, as
seen from the apex, is caused by basal clockwise rotation
and apical counterclockwise rotation around the ventricu-
lar long axis (Figure 3). Torsion is directly related to the
myofiber orientation and function such that earlier activa-
tion of the subendocardial helix in relation to the subepi-
cardial helix, which is activated later in systole, may
explain the brief initial rotation observed at the apex [29].
As well, twisting of the LV is associated with potential
energy accumulation that is released during the isovolu-
metric relaxation phase by untwisting of the subendocar-
dial fibers, thus contributing to diastolic suction [30,31].
Using CMR tagging for quantifying torsion in patients
with aortic stenosis, Nagel et al. [32,33] found patients
with severe stenosis to have reduced basal rotation and
increased apical rotation during systole, along with
delayed and prolonged untwisting during diastole. Thus,
alteration in rotation patterns can also be used to discrim-
inate subtle changes in systolic and diastolic dysfunction
in the setting of a variety of cardiomyopathic states.

Normal Left Ventricular Strain Patterns

Mid wall LV circumferential strain (E.:) is the most fre-
quently computed parameter for quantifying regional
function. This particular strain measure is favored, in part,
due to myocardial geometry contributing an abundance
of tagging data around the mid wall myocardial circum-
ference compared to along the width of radial wall thick-
ness [34]. This makes E data less sensitive to noise and
more suitable for assessing the transmural strain gradient.
In the normal heart, circumferential strain increases grad-
ually from the base towards the apex. With respect to
transverse regions, the greatest shortening is consistently
observed in the anterior and lateral myocardial segments
with the least deformation seen in the inferior wall. Addi-
tionally, E is seen to increase from epicardium towards
endocardium. [34-36].

Maximum longitudinal LV strain (E;;) has also been
measured in multiple studies [34-36] and is consistently

http://www.jcmr-online.com/content/11/1/55

greater at the apex compared to the base. This is contrary
to longitudinal displacement, which is reportedly higher
at the base, indicating greater basal translation caused by
apical and mid ventricular pull during systole [24]. Simi-
lar to E., E;; shows a transmural pattern that increases
from epicardium to endocardium. Maximum radial strain
(Egg). on the other hand, shows a degree of disparity in its
reported values with no consistent pattern across different
studies [34]. Young et al. [36] reported higher Eg; at the
base particularly at the lateral segment, whereas Moore et
al. [34] reported Eg increasing from base to apex. How-
ever, endocardial Ez, was consistently higher than epicar-
dial Egy Congruent with the general pattern of almost all
other measures, maximum torsion angle also increases
across the LV wall from epicardium towards the endocar-
dium as well as from the base toward the apex in the nor-
mal heart.

With respect to the regional timing of myocardial contrac-
tion, Zwanenburg et al. [37] used high temporal resolu-
tion (14 ms) CMR tagging to examine spatial patterns of
circumferential systolic shortening during the cardiac
cycle. They observed the earliest onset of circumferential
systolic shortening in the lateral wall and the latest onset
in the septum. Conversely, peak systolic shortening was
reached earlier in the septum compared to the lateral wall.
When applying the same technique to assess both dis-
eased and healthy myocardium, no consistent pattern of
contraction propagation was detected in ischemic com-
pared to normal subjects [38].

When referring to expected normal patterns of regional
myocardial deformation, consideration should always be
made for the effects of aging. Fonseca et al. [39] and Oxen-
ham et al. [40] observed that aging was associated with lit-
tle change in peak circumferential or longitudinal
shortening. However, they noted relatively prolonged
time to peak shortening in older compared to younger
subjects. Interestingly, older age groups, compared to
younger subjects, also demonstrated higher peak rotation
that persisted for longer. As well, aging related diastolic
dysfunction was evident in the form of reduced peak rate
of relaxation of E-and E;; (p < 0.001 for both). Using 2D
displacement data from tagging to examine differences in
the transmural distribution of myocardial shortening,
Lumens et al. [41] further observed loss of contractile
myofiber function in the subendocardium relative to the
subepicardium among asymptomatic, aged subjects.

Coronary Artery Disease

Many individuals with underlying coronary artery disease
are asymptomatic and go unnoticed before they present
with major coronary events. Since atherosclerosis is the
most important primary etiologic factor predisposing to
the development of HF, the Multi-ethnic Study of Athero-
sclerosis (MESA) was initiated in 2000 to investigate the
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prevalence, correlates, and progression of subclinical car-
diovascular disease in a community-based population of
6,500 men and women of different racial/ethnic back-
grounds. Harmonic phase analysis of myocardial tagged
images proved highly reproducible in MESA for detecting
silent myocardial dysfunction in asymptomatic popula-
tions [42]. Using CMR tagging, investigators studied the
relationship between regional LV function and traditional
risk factors for atherosclerosis, such as hypertension and
smoking. Increased diastolic blood pressure and smoking
were associated with lower E.. in the left anterior
descending and right coronary territories, with dose
dependent effect seen between LV function and smoking
[43]. With respect to the structural changes associated
with long-standing hypertension, in particular, asympto-
matic MESA individuals with LV hypertrophy had reduced
early diastolic regional function, quantified using diasto-
lic strain rate (p < 0.001). This finding remained signifi-
cant even in the setting of preserved regional systolic
function [28], supporting the concept of hypertensive
heart disease and diastolic dysfunction as potential pre-
cursors to clinical HF.

Beyond their association with cardiovascular risk factors,
changes in regional myocardial function also correlated
with more specific markers of subclinical atherosclerosis
in MESA. Coronary artery calcification burden, quantified
by computed tomography, was related to reduced
regional E and its strain rate in the corresponding coro-
nary territory, suggesting a link between coronary athero-
sclerosis and incipient regional dysfunction [44].
Increased carotid wall stiffness and intima-media thick-
ness (IMT) were also strongly related with reduced systolic
and diastolic regional function (E.;) among individuals
free of known cardiovascular disease [45,46]. In particu-
lar, Fernandes et al. [46] showed that increased IMT was
related to less circumferential shortening in all myocardial
regions (p < 0.05) except in the inferior wall. In addition,
greater IMT was associated with a lower diastolic strain
rate, representing reduced diastolic function, in all regions
(P < 0.01) except the anterior wall.

Myocardial Ischemia

Given the strong association between regional myocardial
dysfunction and markers of prevalent coronary disease,
multiple studies have used tagging to further explore its
relation with myocardial ischemia. Rosen et al. [47] exam-
ined the relationship between regional coronary per-
fusion reserve and regional myocardial function in a
subset of 74 symptom-free MESA participants who under-
went adenosine stress CMR perfusion scans. In this study,
reduced coronary perfusion reserve was associated with
reduced regional systolic function mainly in the right cor-
onary and left circumflex territories.

http://www.jcmr-online.com/content/11/1/55

A particularly useful feature offered by myocardial tagging
is its ability to provide a detailed assessment of contractile
reserve in the setting of ischemia. Myocardial tagging,
either independently or combined with the findings of
gadolinium enhanced CMR, can also assess and predict
the extent of functional recovery after successful reper-
fusion of a transmural myocardial infarction [48,49]. As
well, myocardial CMR tagging is particularly advanta-
geous over plain cine imaging for quantifying contractile
reserve in the setting of dobutamine stress CMR. In fact,
combining tagging with dobutamine stress for detecting
chronic hibernating myocardium yielded a sensitivity of
89% and a specificity of 93% for recovery of segmental
function 4-8 weeks after revascularization in 10 patients
[50]. Furthermore, assessing contractile reserve across the
myocardial layers is possible with tagging given its supe-
rior spatial resolution and higher tissue characterization
[51].

When comparing qualitative assessment of myocardial
contractile reserve by CMR tissue tagging versus echocar-
diography, CMR had a similar sensitivity (82% versus
86%) but lower specificity (69% versus 87%). Overall
accuracy was 76% for CMR and 85% for echo [52]. Lower
CMR specificity could be attributed to difficulties in cross
registration between the two modalities [53]. In 211
patients with chest pain, Kuijpers et al. [54] showed that
dobutamine CMR with myocardial tagging could detect
more angiographically confirmed new wall motion
abnormalities (68 patients) than dobutamine CMR with-
out tagging (58 patients). Moreover, myocardial tagging
demonstrated better ability to discriminate between
patients at risk for major adverse cardiac events and those
who were more likely to remain event-free.

Myocardial Infarction

In addition to assessing contractile reserve in the setting of
ischemia, myocardial tagging has made it possible for
investigators to elucidate the mechanisms related to post-
infarct ventricular remodeling. In particular, myocardial
tagging is able to define changes in regional function
involving the infarcted myocardium versus areas remote
from the infarcted myocardium (Figure 4 and additional
file 3). In the acute post-infarct period, alteration and reo-
rientation of principal strains have been observed in both
the infarct and remote myocardium in animal models and
humans [55,56]. Kramer et al. [57] found reduced circum-
ferential and longitudinal segmental shortening in adja-
cent compared to remote myocardium, reflecting the
probable effect of increased wall stress on LV remodeling.
Nagel et al. [33] studied 18 patients with anterolateral
wall infarction and found reduced apical systolic rotation
as well as delayed and prolonged diastolic untwisting in
these patients compared to healthy controls. Moreover,
infarcted myocardium in the setting of microvascular
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Figure 4

Myocardial infarction at the infero-septal region of
left ventricle (A-D). Inversion recovery mid ventricular
short axis image (A) demonstrates subendocardial delayed
enhancement at the infero-septal region of the left ventricle
(white arrow) in the distribution of right coronary artery.
Corresponding tagged image and strain analysis curves (B &
D) demonstrate reduced Eat the infarct region (blue curve
I) compared to lateral wall (red curve 2) and adjacent non
enhanced myocardium (green curve 3). Color coding (C) of
tagged image aids visual assessment of regional dysfunction
(dysfunctional infarcted myocardium in green). See additional
file 3: Movie 3 for the original data used.

obstruction demonstrated reduced regional systolic cir-
cumferential and longitudinal shortening in relation to
the extent of obstruction [58]. Overall, when comparing
strain analysis to wall thickening assessment as two differ-
ent techniques for assessing post-infarcted myocardium,
2D strain quantification was more accurate in discrimi-
nating infarct from remote myocardium [59].

Non-Ischemic Cardiomyopathies

Non-ischemic dilated cardiomyopathies (DCM) are charac-
terized by ventricular eccentric remodeling, increased ven-
tricular volume, and globally reduced ventricular
function. In a cohort of 13 DCM patients, Young et al.
[60] quantified 3D motion and myocardial strain with the
aid of a finite element model. Five of the patients were fol-
lowed up after LV reduction by partial left ventriculotomy
(PLV). In the examined subjects, circumferential and lon-
gitudinal systolic lengthening (i.e. reduced systolic func-
tion) occurred in the septum whereas the lateral wall
demonstrated normal systolic shortening. Increased wall
stress may have contributed to this observed heterogene-
ity of regional function. Post PLV, patients demonstrated
significant recovery of their septal function, whereas lat-
eral wall shortening was significantly reduced (p < 0.02

http://www.jcmr-online.com/content/11/1/55

pre vs. post). Kanzaki et al. [61] studied another cohort of
26 DCM subjects and observed that peak systolic torsion
was reduced in DCM cases compared to controls at both
the base (0.1 £ 2.9° vs. 2.6 + 1.6°, p < 0.05) and apex (-
59+5.3°vs.-11.2 +2.5°,p <0.001), whereas the timing
of peak rotation was earlier (66 + 22 vs. 104 + 16% sys-
tole, p < 0.001). Systolic torsion was characterized by a
discontinuing counter rotation of the apex with respect to
the base before end-systole. In addition, amplitude of
peak systolic torsion was impaired in proportion to the
degree of LV dysfunction. In a trial to assess cardiac
mechanics and clinical outcome of PLV, 24 DCM patients
underwent CMR tagging studies before and then 3 and 12
months after PLV. Circumferential LV shortening at three
short axis levels was increased at both post-surgical time
points. Thus, using these and similar methods, CMR tag-
ging can serve as a useful tool for assessing the efficacy of
various surgical as well as non-surgical interventions for
DCM [62].

Hypertrophic cardiomyopathy (HCM) is the most fre-
quently occurring genetic cardiomyopathy responsible for
sudden cardiac death in young trained athletes. Underly-
ing histological changes include myofibrillar disarray and
abnormal intramural coronary vasculature [63]. While
studying 3D myocardial mechanics in HCM, Young et al.
[36] and Dong et al. [64] observed reduced 3D regional
myocardial shortening but also greater LV torsion in cases
compared to controls (19.9 + 2.4° vs. 14.6 + 2.7°, p <
0.01). Changes in myocardial contractility in the non-
hypertrophied regions of HCM have been a subject of
controversy. Therefore, to assess regional function in these
non-hypertrophied regions, Mishiro et al. [65] examined
20 patients with asymmetric septal hypertrophy and
showed that regional contractility was impaired in both
hypertrophied and non-hypertrophied regions. They also
observed systolic LV wall asynchrony. Implementing a
modified CSPAMM sequence that allows full cardiac cycle
data acquisition using the cardiac phase to order recon-
struction technique (CAPTOR), Ennis et al. [66] com-
pared mid wall E during systole and diastole in 8 HCM
patients and 6 normal volunteers. In HCM patients, total
systolic strains were reduced in the septal and inferior
regions (p < 0.01 for both). On the other hand, early
diastolic strain rates were significantly reduced in all
regions, indicating slow and impaired filling function in
HCM cases relative to controls.

Myocardial tagging has also been used to explore the rela-
tion of regional dysfunction with areas of abnormal myo-
cardial perfusion in HCM. In a prospective trial including
53 patients, Soler et al. [67] found good correlation
between delayed enhancement areas in hypertrophic car-
diomyopathy and perfusion defects (r = 0.5, p < 0.01),
whereas a weak but significant correlation was detected
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between delayed enhancement and hypokinetic seg-
ments. Recently, Kim et al. [68] demonstrated impaired
circumferential shortening in delayed enhancement areas,
where E-- was more substantially reduced in the regions
displaying focal nodular enhancement patterns rather
than in patchy enhanced regions.

Muscular dystrophies are a group of inherited diseases
involving primarily the skeletal muscle leading to degen-
eration and progressive weakness. Cardiac involvement is
not infrequent and can manifest as cardiomyopathy, con-
duction defects, and sudden death. In a study conducted
by Ashford et al. [69], regional myocardial function was
assessed using CMR myocardial tagging in 13 patients
with Duchenne muscular dystrophy without clinically
apparent heart diseases. Despite preserved LV volumes,
ejection fraction, and torsion, these patients manifested
reduced basal and mid-ventricular circumferential strain
compared to healthy subjects. Thus, CMR with tissue tag-
ging can be used as a sensitive tool for detecting occult
myocardial dysfunction related to muscular dystrophies
that might otherwise go unnoticed.

Ventricular Dyssynchrony

Cardiac resynchronization therapy (CRT) is the treatment
of choice for management of patients with ventricular
dyssynchrony [70]. Despite its overall efficacy, 20-30% of
the patients receiving CRT do not show favorable
improvement. This has highlighted the need to improve
prospective identification of the optimal candidates for
such treatment. Current approaches to identifying candi-
date patients for CRT rely on assessing QRS duration,
where QRS prolongation is often an indicator of underly-
ing dyssynchronous ventricular contraction. However, the
duration of the QRS interval has been proven inadequate
for predicting post-CRT acute and chronic responses to
therapy. Therefore, several echocardiographic methods
have been proposed to aid in assessing and selecting
patients for CRT. Echocardiographic techniques, however,
are greatly limited by the operator performance as well as
the availability of acoustic windows for transducer place-
ment [71]. On the other hand, quantitative CMR strain
analysis offers a highly reproducible, operator independ-
ent, 3D regional myocardial activation analysis that offers
a better suited technique for evaluating dyssynchrony.
Using CMR strain analysis, the difference in mechanical
activation (T,,s) and time to peak contraction (T,.)
between the septum and lateral wall can be easily derived
from all segments in a given cross section [37,38]. Simi-
larly, the variance of strain magnitude can be easily deter-
mined for each short axis slice and can be averaged from
base to apex [72]. Moreover, several additional metrics
have been derived [72-74] and employed to determine the
optimal LV pacing region for CRT [75] and predict the
response to therapy. Combining CMR tagging data with
delayed enhancement scar quantification further

http://www.jcmr-online.com/content/11/1/55

improves predictive accuracy [76]. Future studies promise
to clarify which of these CMR tagging based metrics may
offer the most predictive information with respect to ben-
efit from CRT.

Right Ventricular Tagging

Right ventricular (RV) function plays a pivotal prognostic
role in a wide variety of diseases involving the heart as
well as the lung. Thus, the application of CMR tagging has
been extended to include assessments of RV regional func-
tion. It should be noted, however, that there are several
technical challenges involved in applying CMR tagging
analyses to the RV. For example, the very thin wall (<5
mm) of the normal RV offers less than the minimum opti-
mal tag spacing (>6 mm) and therefore limits the number
of tag stripes that would be required for accurate quantifi-
cation [77]. Nonetheless, while making attempts to
accommodate for this limitation, a number of CMR myo-
cardial tagging studies have been performed on the
healthy and diseased RV to investigate patterns of
mechanical deformation.

In light of the challenges associated with applying CMR
tagging to the RV, several novel approaches have been
developed. Using measures of percent segmental shorten-

Cs00, -
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Figure 5

Pulmonary Arterial Hypertension (A-C). Cine gradient
echo short axis image (A) showing right ventricular hypertro-
phy and systolic flattening of the inter-ventricular septum in a
64 year old patient with pulmonary arterial hypertension.
Corresponding tagged image (B) and graph (C) show
reduced magnitude and delayed RV free wall peak shortening
(red curve |) compared to the septum (green curve 2) and
LV lateral wall (blue curve 3).
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ing, Klien et al. [78] observed that regional RV free wall
systolic function increased monotonically from base
(12%) to mid (14%) to apical slices (16%). Young et al.
[79] were first to use a finite element model for 3D recon-
struction of the in-plane deformations of the RV free wall.
Using this model, they were able to quantify all the com-
ponents of the in-plane strain tensor in the RV free wall.
Fayad et al. [77] then designed a specific breath hold
imaging sequence with 1D tag lines for RV tagging acqui-
sition and, thus, were able to characterize the RV regional
deformation in 7 patients with pulmonary hypertension
and 10 healthy controls. In the normal subjects, regional
RV circumferential shortening was non-uniform, with
increased shortening observed mainly in the RV free wall
progressing from the outflow tract towards the apex. A
more complex non-uniform pattern was also noted in the
longitudinal direction, where greatest shortening was also
seen at the RV out flow tract. In pulmonary hypertension
patients, both circumferential and longitudinal shorten-
ing were globally reduced with significant reduction
observed at the outflow tract. These findings were conjec-
tured as possibly related to increased stress at the RV out-
flow tract region as it plays a resistive role in preventing
transmission of high pressures from the RV free wall to the
pulmonary circulation [80]. Interestingly, Vonk Norde-
graaf et al[81] recently used CMR myocardial tagging to
demonstrate interventricular mechanical asynchrony
between the RV and LV in pulmonary hypertension
patients caused by prolongation of RV systolic contraction
due to increased pressure overload (Figure 5). Therefore,
further developments in analyzing regional function of
the RV will likely facilitate more detailed studies of inter-
ventricular performance.

Conclusion

In conclusion, CMR tissue tagging is a powerful non-inva-
sive diagnostic tool for quantifying regional systolic and
diastolic myocardial function. Owing to the inherent fea-
tures of CMR tissue characterization and its multiplanar
capabilities, CMR tagging is able to reveal previously
undetected components of regional myocardial mechani-
cal function and, thus, aid in the early detection and man-
agement of a wide range of myocardial disease processes.
Moreover, ongoing developments in the technology,
imaging techniques, and analytical tools used to imple-
ment CMR tagging will likely further advance current
capabilities for performing sophisticated analyses of
regional myocardial function. As such, myocardial tagging
promises to continue to enhance our understanding of the
mechanical complexities underlying the function of the
normal and pathological heart
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