Journal of Cardiovascular Magnetic Resonance Oral presentation Open Access # Detection of haemodynamically significant coronary stenoses with k-t SENSE-accelerated Myocardial Perfusion MR Imaging at 3.0 Tesla - a comparison with fractional flow reserve Tim Lockie*¹, Divaka Perera¹, Simon Redwood¹, Amedeo Chiribiri¹, Kalpa de Silva¹, Sebastian Kozerke¹, Michael Marber¹, Eike Nagel¹ and Sven Plein² Address: ¹Rayne Institute, St Thomas' Hospital, KCL, London, UK and ²Rayne Institute, St Thomas' Hospital, KCL and Division of Cardiovascular and Neuronal Remodelling, LIHY Institute, University of Leeds, Leeds, UK * Corresponding author from 13th Annual SCMR Scientific Sessions Phoenix, AZ, USA. 21-24 January 2010 Published: 21 January 2010 Journal of Cardiovascular Magnetic Resonance 2010, 12(Suppl 1):O3 doi:10.1186/1532-429X-12-S1-O3 This abstract is available from: http://jcmr-online.com/content/12/S1/O3 © 2010 Lockie et al; licensee BioMed Central Ltd. ## **Background** *k*-space and time sensitivity encoding (*k*-*t* SENSE) has been used to improve temporal or spatial resolution of perfusion CMR against visual interpretation of x-ray angiography (XRA). # **Purpose** To compare high spatial resolution *k-t* SENSE CMR perfusion at 3 T against fractional flow reserve (FFR), the reference method for detection of flow-limiting coronary stenoses in the catheter laboratory. #### **Methods** Patients with known or suspected coronary artery disease awaiting coronary XRA were studied, undergoing a CMR scan <48 hrs before XRA. #### **CMR** k-t SENSE accelerated perfusion CMR was performed on a 3 T Philips Achieva system (saturation recovery gradient echo, repetition time/echo time 3.0 ms/1.0 ms, flip angle 15°, $5 \times k\text{-}t$ SENSE acceleration, 11 interleaved training profiles, effective acceleration 3.8, spatial resolution $1.1 \times 1.1 \times 10 \text{ mm}^3$, 3 slices acquired at each RR interval). Data were acquired during adenosine hyperaemia and at rest (0.05 mmol/kg Gd-DTPA). FFR was measured in all vessels with >40% severity stenosis using a pressure sensortipped wire (Volcano*). FFR < 0.75 was considered to rep- resent a haemodynamically significant lesion. FFR was calculated as $(P_d - P_v)/(P_a - P_v)$, where $P_{a'}$ P_v and P_d are simultaneous aortic, right atrial and distal coronary pressures measured during an intravenous infusion of adenosine at 140 µg/kg/min. Two experienced observers blinded to the results of the angiogram visually interpreted ischemia on CMR data as relative underperfusion of a sector within a slice or relative endocardial underperfusion compared with epicardial perfusion. The performance of visual analysis of CMR to detect flow-limiting coronary stenosis on angiography was determined. Interobserver variability was calculated using the k coefficient. #### Results 39 patients (27 male, age 67.1 \pm 8.1 years) were successfully recruited and underwent the complete protocol. 1 patient was excluded from the analysis because of technical problems with the FFR measurement, so that 114 coronary territories were studied. Mean scanning time was 56 \pm 13 minutes. 49 vessels underwent pressure wire assessment. Of these, 26 lesions had an FFR < 0.75 (mean 0.53 \pm 0.17) and 23 lesions had an FFR \geq 0.75 (mean 0.89 \pm 0.06). Sensitivity and specificity of CMR perfusion to detect coronary stenoses at a threshold of FFR < 0.75 was 0.82 [95% CI 0.61-0.93] and 0.94 [95%CI 0.87-0.98] p < 0.0001, respectively. The k variability coefficient was 0.79 Figures 1 and 2. MR Perfusion Visual Analysis Figure I ## Conclusion *k-t* SENSE accelerated high-resolution perfusion MR at 3 T accurately detects flow-limiting coronary artery disease as defined by FFR, with good inter-observer agreement. The high specificity of perfusion CMR in this study may be the result of the high spatial resolution at which endocardial dark rim artefacts are reduced. Figure 2 Stress perfusion image showing anterior wall perfusion defect.