

POSTER PRESENTATION

Open Access

Epicardial fat volume is associated with coronary endothelium-dependent vasomotor response in healthy subjects

Bénédicte Gaborit^{1*}, Pierre Julien Moro², Antonin Flavian³, Frank Kober³, Alexis Jacquier³, Jacques Quilici⁴, Thomas Cuisset⁵, Umberto Simeoni⁶, Patrick Cozzone³, Monique Bernard³, Anne Dutour¹

From 2011 SCMR/Euro CMR Joint Scientific Sessions Nice, France. 3-6 February 2011

Introduction

Epicardial fat ($E_{\rm fat}$) is an active ectopic fat depot, directly surrounding coronary arteries, and secreting high level of inflammatory adipokines; its development has been associated with coronary atherosclerosis. We investigated the relationship between $E_{\rm fat}$ and endothelium dependent vasoreactivity of the coronary microcirculation.

Methods

Myocardial blood flow (MBF) was determined by measuring coronary sinus flow with velocity-encoded cine magnetic resonance imaging at 3 teslas. We measured MBF at baseline and in response to sympathetic stimulation by cold pressor testing (CPT) in 17 healthy volunteers with normal left ventricular function (age 24 ± 6 years, BMI=21.1±2.6kg/m2). $E_{\rm fat}$ volume was volumetrically assessed by manual delineation on short-axis views. CPT was applied by immersing one foot in ice water for 4 minutes.

Results

A significant increase in MBF was observed: 1.18 ± 0.58 vs 0.84 ± 0.47 mL.min-1.g-1, CPT vs rest, p=0.002. Mean relative MBF increase (Δ MBF) was $50\pm47\%$. Mean E_{fat} volume was 82 ± 31 mL and varied from 43 to 131 mL; mean LV mass and Left ventricular ejection fraction were $104\pm31g$ and $64\pm5\%$, respectively. CPT significantly increased heart rate (HR) by $28\pm13\%$, systolic blood pressure (BP) by $17\pm13\%$, diastolic BP by $23\pm19\%$ and rate-pressure

product by 52±25%, p<0.01, indicating an increase in myocardial work load. The increase in HR, reflecting sympathetic stimulation, was not influenced by sex, age or $E_{\rm fat}$ volume. CPT induced a decrease in coronary vascular resistance (150±93 vs 114±44 mmHg.mL-1.min.g) by trend (p=0.08). Interestingly, we found a significant negative correlation between $E_{\rm fat}$ volume and Δ MBF (r=-0.51, p=0.03), which remained significant after adjusting for age and sex. Δ MBF was not associated with waist circumference, BMI, CRP, lipid or glycemic parameters.

Conclusion

The increase in $E_{\rm fat}$ is associated with a decrease in endothelium dependent vasoreactivity response, suggesting that $E_{\rm fat}$ could early influence endothelial function.

Author details

¹INSERM U626, Marseille, F-13385 France , Centre de Résonance Magnétique Biologique et Médicale (CRMBM), CNRS UMR 6612, Department of Endocrinology, Metabolic Diseases and Nutrition, CHU Nord, Marseille, France, Marseille, France. ²Centre de Résonance Magnétique Biologique et Médicale, CNRS UMR N°6612, Marseille, France. ³Centre de Résonance Magnétique Biologique et Médicale (CRMBM), CNRS UMR 6612, Marseille, France. ⁴Department of Cardiology, CHU Timone, Marseille, France, Marseille, France, Department of Cardiology, CHU Timone, Marseille, France, Marseille, France,

Published: 2 February 2011

doi:10.1186/1532-429X-13-S1-P71

Cite this article as: Gaborit *et al.*: Epicardial fat volume is associated with coronary endothelium-dependent vasomotor response in healthy subjects. *Journal of Cardiovascular Magnetic Resonance* 2011 **13**(Suppl 1): P71

Full list of author information is available at the end of the article

¹INSERM U626, Marseille, F-13385 France , Centre de Résonance Magnétique Biologique et Médicale (CRMBM), CNRS UMR 6612, Department of Endocrinology, Metabolic Diseases and Nutrition, CHU Nord, Marseille, France, Marseille, France