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Abstract

Background: 4D Multiphase Steady State Imaging with Contrast (MUSIC) acquires high-resolution volumetric
images of the beating heart during uninterrupted ventilation. We aim to evaluate the diagnostic performance and
clinical impact of 4D MUSIC in a cohort of neonates and infants with congenital heart disease (CHD).

Methods: Forty consecutive neonates and infants with CHD (age range 2 days to 2 years, weight 1 to 13 kg) underwent
3.0 T CMR with ferumoxytol enhancement (FE) at a single institution. Independently, two readers graded the diagnostic
image quality of intra-cardiac structures and related vascular segments on FE-MUSIC and breath held FE-CMRA images
using a four-point scale. Correlation of the CMR findings with surgery and other imaging modalities was performed in all
patients. Clinical impact was evaluated in consensus with referring surgeons and cardiologists. One point was given for
each of five key outcome measures: 1) change in overall management, 2) change in surgical approach, 3) reduction in
the need for diagnostic catheterization, 4) improved assessment of risk-to-benefit for planned intervention and discussion
with parents, 5) accurate pre-procedural roadmap.

Results: All FE-CMR studies were completed successfully, safely and without adverse events. On a four-point scale, the
average FE-MUSIC image quality scores were >3.5 for intra-cardiac structures and >3.0 for coronary arteries. Intra-cardiac
morphology and vascular anatomy were well visualized with good interobserver agreement (r = 0.46). Correspondence
between the findings on MUSIC, surgery, correlative imaging and autopsy was excellent. The average clinical impact score
was 4.2 ± 0.9. In five patients with discordant findings on echo/MUSIC (n = 5) and catheter angiography/MUSIC (n = 1)
, findings on FE-MUSIC were shown to be accurate at autopsy (n = 1) and surgery (n = 4). The decision to
undertake biventricular vs univentricular repair was amended in 2 patients based on FE-MUSIC findings. Plans
for surgical approaches which would have involved circulatory arrest were amended in two of 28 surgical
cases. In all 28 cases requiring procedural intervention, FE-MUSIC provided accurate dynamic 3D roadmaps and
more confident risk-to-benefit assessments for proposed interventions.

Conclusions: FE-MUSIC CMR has high clinical impact by providing accurate, high quality, simple and safe dynamic 3D
imaging of cardiac and vascular anatomy in neonates and infants with CHD. The findings influenced patient
management in a positive manner.
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Background
Within the past decade, advances in cardiovascular
imaging and therapeutic interventions have improved
the care of newborns with congenital heart disease
(CHD). Severe congenital anomalies are nowadays
often detected with fetal echocardiography during
gestation such that elective deliveries can be planned
at centers of excellence. While echocardiography is
clearly the first line of imaging in neonates, even in
the best of hands there may remain unanswered
questions. In these cases, cardiovascular magnetic
resonance (CMR) has emerged as a second line
technique that does not involve ionizing radiation.
Further, in small children with complex CHD and
multisystem involvement, CMR holds promise for
comprehensive pre-surgical evaluation with catheter
angiography reserved for select indications and
image-guided interventions.
CMR in pediatric CHD however, is highly special-

ized and individualized as almost all sequences re-
quire adaptation for body size, heart rate and specific
clinical questions. Compared to older children, the re-
quirement for spatial resolution is more stringent.
Further, CMR exams in this population should be
brief due to the high acuity of many cases and to
minimize time outside of the neonatal intensive care
unit (NICU). Conventional CMR techniques for
pediatric CHD typically involve a timed bolus of a
gadolinium based contrast agent (GBCA) for 3D vas-
cular evaluation, in addition to multiple 2D breath
hold cine acquisitions in customized orientations. A
4D imaging approach can potentially combine the
best of both worlds, providing high resolution 3D
anatomy and an unlimited number of 2D cine planes
for reconstruction in arbitrary orientations.
Recently, a 4D Multiphase Steady-state Imaging

with Contrast (MUSIC) CMR technique was intro-
duced, which generates sub-millimeter, isotropic 3D
voxels over multiple phases of the cardiac cycle [1].
MUSIC data are acquired without breath holding
during continuous positive pressure ventilation, and
the airway pressure signal is used for respiratory gat-
ing. Cardiac gating is implemented using the ECG
and a stable blood pool signal is assured by imaging
during the steady state distribution of ferumoxytol
(Feraheme®, AMAG, Lexington, MA). With a total
scan time of 7–10 minutes, MUSIC offers the poten-
tial for rapid, simple, safe and versatile mapping of
complex cardiovascular anatomy with dynamic reso-
lution previously not available.
In this study, we aim to evaluate the diagnostic quality

and performance of ferumoxytol (FE) enhanced MUSIC
CMR in a cohort of neonates and infants with CHD and
to assess its impact on patient management.

Methods
This prospective study was approved by our Institu-
tional Review Board and was compliant with the
Health Insurance Portability and Accountability Act.
Written informed consent was obtained from legal
guardians of all subjects. Forty consecutive neonates
and infants with CHD (age range 2 days to 2 years;
21 females; weight range 1 to 13 kg) undergoing an
FE-CMR from 2013 to 2016 were enrolled, including
two recent subjects enrolled under IND #129441
(Clinicaltrials.gov NCT02752191). No patients were
excluded. Primary study indications were: 1) assess-
ment of vascular anatomy (n = 20), 2) intra-cardiac
anatomy (n = 17), 3) pre-interventional or surgical
planning (n = 16). Primary diagnoses are outlined in
Additional file 1: Table S1.
In patients whose blood gas status was felt sufficiently

stable for safe breath holding by attending neonatologists
or anesthesiologists, breath-held 3D FE-CMRA (cardio-
vascular magnetic resonance angiography) was performed
as a standard of care reference for comparison of image
quality with MUSIC.

MR Acquisition
All neonates and infants were examined during con-
tinuous positive pressure ventilation as is standard at
our institution and at many centers performing neo-
natal CMR [2, 3]. Patients were transported directly
to the CMR suites, already intubated and sedated.
Sedation management and physiologic monitoring
have been described previously [4] and typically in-
cluded IV fentanyl and rocuronium. Continuous mon-
itoring of heart rate, blood pressure, pulse oximetry,
and end-tidal CO2 was performed and recorded in all
cases.
All studies were performed on a clinical 32-channel

3.0 T system (Magnetom TIM Trio, Siemens Medical
Solutions). Phased-array multi-element coils were
used for signal reception, in configurations based on
body size. For children weighing less than 2 kg, a 16-
channel adult extremity (knee) coil was employed. For
children weighing 2 kg or more, a combination of
head-neck (posterior elements) and small flex coil
(anterior elements) was used. Imaging parameters for
breath-held FE-CMRA were: repetition time/echo
time (TR/TE) 2.9/0.9 ms; flip angle 15-17°; in-plane
resolution 0.9–1.2 mm; slice thickness 0.9–1.1 mm;
GRAPPA acceleration 3×–4×; 75% partial Fourier ac-
quisition in both phase encoding directions. FE-
MUSIC was acquired during continuous ventilation
using the airway pressure signal for respiratory gating
[1]. No adjustments were made to the ventilatory fre-
quency, amplitude or waveform to maximize gating
efficiency and the default settings were employed.
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Technical parameters for FE-MUSIC were: TR/TE
2.9/0.9 ms; flip angle, 25°; 3D isotropic (non-interpo-
lated) resolution 0.6–0.9 mm; GRAPPA 2×–3×; 75%
partial Fourier in both phase encoding and partition
encoding directions. The pressure waveform from the
endotracheal tube was input into the physiological
monitoring unit of the CMR scanner and served as a
surrogate respiratory gating signal. An empiric re-
spiratory gate time delay of three cardiac segments
(~200 msec) was used to account for the temporal
phase lag between the upper airway pressure wave
and resulting diaphragmatic movement. A 50%
threshold of the pressure peak defined the acceptance
range for the respiratory gating.
A total of 4 mg/kg (elemental iron per kg of body

weight) of the stock ferumoxytol formulation was di-
luted with normal saline by 8×–10× based on patient
size [4]. For first pass imaging (n = 15), half of the di-
luted ferumoxytol solution (2 mg/kg) was infused
over 15 s [5]. The injection duration was 75% of the
acquisition time window [4]. Subsequently, the
remaining half of the diluted ferumoxytol was admin-
istered over 30 s to provide a total dose of 4 mg/kg
for steady state imaging. To comply with a warning
issued by U.S. Food and Drug Administration (FDA)
in March 2015 [6], our protocol was amended to give
ferumoxytol only by slow infusion at a rate of
0.8 mg/kg/min. Therefore, in 25 of 40 subjects who
received ferumoxytol, only steady state imaging was
performed.

Image analysis
Two experienced CMR readers independently scored the
images. FE-MUSIC images were reviewed using ‘multipla-
nar reconstruction (MPR) cine mode’ on a Mac-OsiriX
workstation (OsiriX MD version 6.5, Pixmeo, Switzerland),
which enables interactive dynamic, multiphase interroga-
tion of arbitrary imaging planes until the optimal plane for
visualization is chosen. For comparison with the single
phase, breath-held FE-CMRA images, each reader was free
to choose a preferred single 3D phase of the FE-MUSIC
images for each of the intra-cardiac structures (valves,
cardiac chambers), ventricular outflow tracts, and named
vascular segments, including the proximal coronary ar-
teries, using a four-point scale [7] (Additional file 1:
Table S1). For coronary artery visualization, the optimal
cardiac phase and plane for coronary visualization was
interrogated. Based on border definition, image contrast,
and presence of artifacts, scores of 1 or 2 were considered
non-diagnostic whereas scores of 3 or 4 were considered
diagnostic. MUSIC findings were correlated with surgical
reports (n = 28), catheterization data (n = 14), cardiac CT
data (n = 4), and autopsy findings (n = 1). The signal-to-
noise ratio (SNR) was calculated as the ratio of the mean

luminal signal intensity (SI) divided by the standard devi-
ation of noise and was further divided by 1.53 to adjust for
Rayleigh noise distribution [8]. The contrast-to-noise ratio
(CNR) was calculated as the difference between the SNR
of the lumen and SNR of nearby muscle tissue. Noise was
defined by the standard deviation in regions of interest of
air within the imaging field of view.

Clinical impact
The impact of FE-MUSIC on overall diagnosis and patient
management for each case was scored in consensus with
collaborating surgeons and cardiologists. Five key measures
of added value were assessed: 1) change in overall surgical
management, 2) change in surgical approach, 3) reduction
in the need for diagnostic catheterization, 4) improved
assessment of risk-to-benefit for planned intervention and
discussion with parents, 5) accurate pre-procedural
roadmap.

Statistical analysis
Statistical analysis was performed using MedCalc 12.0.1.0
(Mariakerke, Belgium). Continuous data were summarized
as mean ± standard deviation or as mean and interquartile.
Categorical data were summarized as absolute values and
frequencies. The Wilcoxon rank sum test was used to
compare the image quality scores between breath-held
FE-CMRA and FE-MUSIC. Pearson’s correlation coeffi-
cient was used to determine inter-observer correlation.
Analysis of variance (ANOVA) for repeated measure-
ments was used to determine the statistical significance of
temporal changes in mean heart rate, blood pressure,
pulse oximetry (SpO2), and end-tidal CO2. A p value <
0.05 is considered significant.

Results
All 40 patients (neonates [n = 20, 2 to 25 days, 1–
4 kg]; infants [n = 20, 1.2 months to 2 years, 2–
13 kg]) underwent the ferumoxytol-enhanced exam
safely and without any adverse events, including those
who had bolus injection of ferumoxytol for breath
held FE-CMRA. Total image acquisition time for FE-
MUSIC ranged from 7 to 10 mins. The SNR and
CNR of the FE-MUSIC images were 54 ± 21 and 38 ±
15, respectively. Clinical complexity and diagnoses of
the patient cases are outlined in Additional file 1:
Table S2. Heart rate, blood pressure, blood oxygen-
ation and end tidal CO2 remained stable throughout
the procedure and variations were not statistically sig-
nificant (p > 0.05) (Additional file 1: Table S3).

Image quality
Image quality scores are reported in Table 1. Respiratory
gating efficiency for the MUSIC acquisition ranged from
45 to 58%. Of the 13 intra-cardiac structures and
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vascular segments evaluated, FE-MUSIC had an average
image quality score greater than 3.5 in 12 structures and
3.3 for the coronary arteries. Based on a four-point scor-
ing system, scores of 3 or greater indicate that all rele-
vant cardiac and vascular structures within the imaged
field of view were confidently evaluable on FE-MUSIC
images. Inter-reader correlation of FE-MUSIC scores
was higher (r = 0.46, 95% CI 0.37 to 0.55, p < 0.01) com-
pared to FE-CMRA (r = 0.41, 95% CI 0.30 to 0.58, p <
0.01). In the subset of babies (n = 15) with both FE-CMRA
and FE-MUSIC, FE-MUSIC images provided superior
visualization of intra-cardiac anatomy and superior vascu-
lar definition (p < 0.001). For FE-CMRA images, the aver-
age image quality scores were <2.5 for all intra-cardiac
structures, outflow tracts, and coronary arteries.
Figures 1 and 2 and Additional file 2: Figure S1 pro-

vide a range of comparative examples of FE-CMRA and
FE-MUSIC image quality. Videos are provided as online
files to highlight the incremental benefit of dynamic
multiphase display. The online videos illustrate clear def-
inition of valve leaflets and the dynamic relationship of
great vessels to intracardiac structures over multiple
phases of the cardiac cycle. Using the interactive cine
mode of multiplanar reformats, arbitrary planes of the
beating heart could be interrogated. This latter feature
facilitated more confident visualization of cardiac cham-
bers and coronary anatomy, provided a roadmap for surgi-
cal planning, and enabled more confident risk-to-benefit
assessment. The quality of FE-MUSIC is exemplified by il-
lustrative examples of coronary anatomy in neonates and
infants whose heart rate are physiologically tachycardic
and clear visualization requires high spatial resolution
(Additional file 2: Figure S1, Fig. 2c-d, Fig. 4b-c, Fig. 6,

Additional file 3: online video 6a). In an unstable 1.1 kg
patient with a tiny 700 micron patent ductus arteriosus
(PDA), acidosis, and a heart rate of 160–180 bpm (Fig. 1),
multi-planar thin slice (0.8 mm) cine reconstruction of
the FE-MUSIC data showed the origin, nature and ex-
tent of thrombus from an infected umbilical vein catheter
to the right atrium. Successful and complete surgical
thrombectomy was performed without further imaging.

Correlation of MUSIC Findings with other Modalities
MUSIC findings correlated well with angiographic data
(n = 14), cardiac CT (n = 4), and surgical reports (n = 28).
Autopsy findings were available for one neonate (Fig. 2).
In five patients with discordant findings (echo and MUSIC
[n = 5]; catheter angiography and MUSIC [n = 1]), the
findings on FE-MUSIC were shown to be accurate at aut-
opsy (n = 1) or surgery (n = 4). Images in Fig. 2 are of a
premature neonate weighing 1.5 kg who underwent CMR
following echo and angiography to further clarify vascular
and intra-cardiac anatomy. The patient had a heart rate of
160–170 beats per minute (bpm). FE-MUSIC showed a
dysplastic pulmonic valve with right ventricular enlarge-
ment, an aneurysmal pulmonary artery and severe pul-
monary regurgitation. An anomalous right coronary artery
was incidentally noted on FE-MUSIC (Fig. 2d), which had
not been evident on echo or catheterization nor well-
visualized on FE-CMRA (Fig. 2c). Comparative breath-
held FE-CMRA produced poor definition of intra-cardiac
(Fig. 2a) and coronary anatomy (Fig. 2c). Autopsy examin-
ation confirmed the aforementioned findings from FE-
MUSIC, in addition to a small PDA. Because of the neo-
nate’s poor renal function and critically ill status, very little
iodinated contrast could be used during catheterization.

Table 1 Image quality score of FE-CMRA and FE-MUSIC

FE-CMRA (n = 15) FE-MUSIC (n = 40) P value*

Right atrium 1.9 ± 0.4 3.7 ± 0.5 p < 0.001

Left atrium 2.0 ± 0.4 3.8 ± 0.4 p < 0.001

Right ventricle 2.0 ± 0.4 3.6 ± 0.5 p < 0.001

Left ventricle 2.0 ± 0.4 3.7 ± 0.5 p < 0.001

Interatrial septum 1.5 ± 0.6 3.8 ± 0.4 p < 0.001

Interventricular septum 2.2 ± 0.7 3.8 ± 0.4 p < 0.001

Tricuspid valve 1.4 ± 0.5 3.6 ± 0.5 p < 0.001

Mitral valve 1.4 ± 0.5 3.7 ± 0.4 p < 0.001

LVOT, aortic valve, and aortic root 2.0 ± 0.7 3.7 ± 0.5 p < 0.001

RVOT, pulmonary valve 1.9 ± 0.7 3.6 ± 0.5 p < 0.001

Main pulmonary artery and second order branches 2.7 ± 0.6 3.6 ± 0.6 p < 0.001

Proximal ascending aorta 2.8 ± 0.6 3.7 ± 0.6 p < 0.001

Coronaries 1.2 ± 0.5 3.3 ± 1.0 p < 0.001

LVOT left ventricular outflow tract, PV pulmonic valve, RVOT right ventricular outflow tract
*P values reflect comparisons between average image quality scores for FE-CMRA and FE-MUSIC using the Wilcoxon rank sum test
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Thus, there was poor contrast opacification of the high
capacity right ventricular outflow tract, where suboptimal
visualization suggested an aortopulmonary window versus
a large PDA. FE-MUSIC clarified and reconciled the find-
ings between echo and catheterization, and definitively
depicted the vascular and intra-cardiac anatomy.

Impact of FE-MUSIC on Patient Management
In all cases, FE-MUSIC satisfactorily answered all clinical
questions requested by referring surgeons or cardiologists
and in many cases provided additional insight, which
impacted the overall patient care plan. Table 2 provides
sample cases highlighting the clinical impact of the FE-
MUSIC findings on patient management. On a five-point
scale (with one point for each key clinical outcome meas-
ure), the average clinical impact score was 4.2 ± 0.9. In all
cases, results from FE-MUSIC informed the overall man-
agement of the patient and informed the risk-to-benefit
evaluation for discussion with the patient’s parents re-
garding the treatment plan (Figs. 3, 4, 5 and 6). Of the
28 cases where management may have needed

additional assessment by catheterization, further diagnostic
evaluation was avoided in 13 patients because relationships
between vascular anatomy and its relationship to intracar-
diac morphology were well visualized on FE-MUSIC im-
aging. Supplemental information regarding flow patterns
and volume was available as a part of the entire clinical
CMR exam (Fig. 3, Additional file 3: online video 3b; Fig. 5,
Additional file 3: online video 5b and 5c). One diagnostic
cath was performed at an outside facility prior to CMR. Of
the remaining 14 cases that had catheterization, three pa-
tients had necessary pre-Glenn angiograms and 11 under-
went catheterization for therapeutic purposes (four of
which were transcatheter interventions that were in lieu of
high risk surgery). Sixty-eight percent of patients (n = 16
neonates; n = 12 infants) had successful surgical correction
or palliation of congenital anomalies. Circulatory arrest
was avoided in 2 surgical cases. In all cases requiring inter-
vention, multiphase assessment of vessel size and dynamic
3D imaging of intra- and extra-cardiac structures facilitated
procedural planning by decreasing projected operative time
as well as informing more confident assessment of the true

Fig. 1 FE-MUSIC images of a twenty-one-day old boy (1.1 kg) with a patent ductus arteriosus (a-e). A mobile right atrial mass of uncertain etiology
was noted on echocardiography after birth. Three of 8 frames from FE-MUSIC show a large mobile mass (white arrow) in the right atrium (RA) abutting
the tricuspid annulus and valve leaflets (green arrow). The mass has to-and-fro motion and connects via a thin stalk to thrombus (d, Additional file 3:
online video 1a) in the inferior vena cava, which in turn, is continuous with thrombus in the ductus venosus originating from an infected umbilical vein
catheter. A patent ductus arteriosus measuring 700 microns at its waist is shown bridging the pulmonary artery and descending aorta in the FE-MUSIC
image (e, Additional file 3: online video 1b)
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Fig. 2 Correlative FE-MUSIC and autopsy findings of a premature newborn girl (1.6 kg) with severe pulmonary regurgitation, dilated main pulmonary
artery, right ventricular hypertrophy, and anomalous right coronary artery are shown. Breath held FE-CMRA (a, c) shows blurred cardiac borders, poor
definition of RV trabeculae (scored 1) and mild blurring of the severely dilated main pulmonary artery (scored 3). FE-MUSIC (b, d) shows defined cardiac
chambers with hypertrophied and trabeculated right ventricle (RV, scored 4) and interatrial septum (scored 4). The right coronary artery has an
anomalous origin from the left coronary cusp and an inter-arterial course (white arrow in d, scored 3). An ejection flow jet (red arrows) and a
regurgitant flow jet (green arrows) are visualized in systolic and diastolic FE-MUSIC frames (e) respectively. Autopsy findings (f) show full agreement with
volume-rendered FE-MUSIC images (g). Ao, aorta; MPA, main pulmonary artery; RA, right atrium; RV, right ventricle
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risks and benefits of the proposed procedure. For example,
in the case involving a 10-day neonate with hypoplastic
left heart syndrome (Fig. 4, Additional file 3: online
video 4a-4b), identification of large aortopulmonary
collaterals from the abdominal aorta altered the course
of management and surgical approach. In another patient,

clarification of the complex anatomy with 3D volumetric
reconstructions (Fig. 6) and 3D printing of FE-MUSIC im-
ages (Fig. 6d, Additional file 3: online video 6b-6c) helped
cardiologists to communicate with parents and allowed
surgeons to visually describe the operative plan to them.
Prior knowledge of potential procedural risks was felt to

Fig. 3 Multiplanar reformat MUSIC images of a 1-month old boy infant (4.4 kg) with biventricular hypertrophy (a), bicuspid aortic valve (b), and
critical aortic coarctation (c) are shown. Black arrowheads (a) point to thin mitral valve leaflets. Tricuspid valve leaflets and chordae are well
characterized (a, white arrowhead). Bicuspid aortic valve leaflets (b, white arrows) demonstrate good excursion throughout the cardiac cycle.
The transverse aortic arch (c, white line) is hypoplastic (0.32 cm). Critical aortic coarctation (c, white arrow) along with collaterals (c, white arrowheads)
and their dynamic relationship to intracardiac anatomy are well characterized (Additional file 3: Online video 3b). Vessels and intracardiac borders are
sharp. There is moderately reduced left ventricular systolic function (Additional file 3: Online video 3b). Turbulent flow through the bicuspid valve and
minimal flow through the coarctation are demonstrated in Additional file 3: Online video 3b. FE-MUSIC CMR was ordered to define vascular structures
prior to surgery and to delineate the etiology for reduced left ventricular systolic function. Because of the severe coarctation, arch hypoplasia,
and reduced left ventricular systolic function, the patient underwent repair of the coarctation and arch augmentation. The global LV hypokinesis and
systolic function improved after surgical intervention. The arch anatomy was unclear on echo and the FE-MUSIC findings changed the surgical plan as
well as facilitated discussion with parents regarding the overall management plan
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be of significant value when discussing treatment options
with parents or guardians. Of those undergoing surgery,
decisions about the optimal surgical approach were in-
formed by visualization of dynamic cardiac anatomy
shown with FE-MUSIC (Figs. 3, 4, 5 and 6).

Discussion
Our results affirm that FE-MUSIC provided detailed and
reliable multiphase 3D visualization of intra-cardiac and
extra-cardiac vascular anatomy in small babies. We also
demonstrate that findings on MUSIC images had high

clinical impact on the care of neonates and infants with
CHD. FE-MUSIC represents a promising step towards
practical and simplified image acquisition for combined
assessment of dynamic cardiac and vascular anatomy in
this complex patient group. Once the imaging volume is
prescribed, no further interaction is required of the ma-
chine operator. FE-MUSIC images were immediately
available for interrogation by interpreting physicians with-
out additional post-processing. All relevant analyses and
desired reconstructions were performed using a commer-
cially available software with 4D capability. FE-MUSIC

Fig. 4 A 10-day old neonate (3.6 kg) with hypoplastic left heart syndrome (HLHS) who was referred for FE-MUSIC CMR to assess pulmonary vein
stenosis and to delineate intra-cardiac and extracardiac vascular anatomy prior to defining a surgical approach. His heart rate ranged from 126 to
140 beats per minute. HLHS with predominant right heart anatomy (a, multiplanar reformat) and common atrioventricular valve (black arrow)
were confirmed. There were large pulmonary arteries and a diminutive aortic root (b, white arrow; aortic annulus 2.5 mm, sinotubular junction
1.2 mm) with the left main coronary artery (white arrowhead) coming off the aortic sinus. The left anterior descending artery courses between
the RVOT and ventricle (c, white arrowhead). Large APCs (d and Additional file 3: Online video 4a-4b, white arrows) from the abdominal aorta
were seen. The ductal arch (e) is continuous with the descending aorta. White arrow points to the innominate artery and white arrowhead points
to the left pulmonary artery. No pulmonary vein stenosis. Based on the findings, the patient underwent occlusion of APCs and ductal stenting
prior to proceeding with a hybrid Norwood and bilateral banding of the pulmonary arteries. Because MUSIC images provided a clear roadmap for
surgery planning, our surgeons and cardiologists had a better sense of the child’s higher risk profile. MUSIC enhanced the risk discussion with the
child’s parents. As a result, the decision was to palliate rather than pursue a staged operation
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added clinical value by defining relevant dynamic anatomy
clearly, providing detailed diagnostic data and procedural
roadmaps, which informed decision-making, procedural
planning and assessment of risks and benefits. Because no
ionizing radiation is involved, CMR aligns well with the
Image Gently® campaign to explore radiation-free imaging
alternatives in children [9].
FE-MUSIC leverages reliable cardio-respiratory gating

and ferumoxytol enhancement at 3.0 T to generate 4D
images of the beating heart with true isotropic voxel di-
mensions of 0.6–0.9 mm [1]. This was accomplished by
exploiting the high relaxivity and stable blood-pool con-
centration of ferumoxytol for steady state imaging, com-
bined with regular airway pressure and ECG signals for
optimal cardio-respiratory gating. Together, these strat-
egies mitigate both respiratory and cardiac motion artifact

and enable permanent and retrospective interrogation of
cine images in any plane. Moreover, insofar as the respira-
tory waveform and heart rate remain regular and the
blood concentration of ferumoxytol remains stable, FE-
MUSIC can in principle expand to a high limit in both
spatial and temporal resolution, overcoming many of the
inherent challenges associated with CMR in pediatric
CHD. These inherent challenges include small body size,
high heart rates, immature renal function, need for re-
peated apnea, prolonged examination time, and dedicated
physician supervision.
Several possible approaches exist for CMR in small

children. Breath held, cardiac gated 3D contrast enhanced
CMRA with gadolinium is an option [10, 11], but image
acquisition is limited to one or two cardiac phases. Fur-
ther, the limited time window for breath holding sets a

Fig. 5 3D multiplanar reformat and color volume rendered MUSIC images of a 20-day old neonate (2.1 kg) with interrupted ascending aorta
(a, bird’s eye view, Asc Ao) and ventricular septal defect (VSD, b) are shown. 4D color volume rendered MUSIC images are available as Additional file 3:
Online video 5a. Relationships between the large main pulmonary artery (MPA), hypoplastic ascending aorta (3.8 mm), ductal arch, and intracardiac
structures are depicted in c and d). Their 4D dynamic relationships are exemplified in Additional file 3: Online video 5a. The proximal course of the left
coronary artery (LCA) is well visualized (c). FE-MUSIC CMR was obtained to clarify extra-cardiac vessels and intra-cardiac anatomy. Her heart rate ranged
between 137 and 184 beats per minute. Clear definition of intra-cardiac anatomy along with findings of predominant flow through the VSD
(e, Additional file 3: Online video 5b-c) resulted in the patient undergoing biventricular rather than single ventricle repair. LA, left atrium; LSA,
left subclavian artery; LV, left ventricle; RSA, right subclavian artery
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limit on spatial resolution, temporal resolution and SNR.
With FE-MUSIC, spatial resolution, temporal resolution
and SNR have a high upper bound because breath holding
is not necessary and image acquisition spans several mi-
nutes. SNR is likely higher for MUSIC at 3.0 T than at
1.5 T, although a comparison has not yet been performed
in practice.
Others have described the use of 3D bSSFP [12–14]

without contrast at 1.5 T. However, the requirement for
high spatial resolution in small patients mandates a longer
minimum TR per line for bSSFP which, when combined
with the fast blood flow in neonates, predisposes to
troublesome off-resonance artifact [15]. At 3.0 T, this
phenomenon becomes even more problematic. On the
other hand, the spoiled gradient echo acquisition in FE-

MUSIC is insensitive to off-resonance effects at both field
strengths and pulsatility artifacts are mitigated through
gated, multiphase acquisitions. Although 3D respiratory
navigator-gated and ECG-triggered IR-FLASH (inversion
recovery - fast low-angle shot) with gadofosveset triso-
dium (Ablavar®, Lantheus Medical Imaging, MA) [16] has
been described in CHD imaging, this technique produces
only a single cardiac phase. FE-MUSIC provides a per-
manent 4D archive for reconstruction of cardiac-phase
resolved images into any imaging plane, such that the
requirement to acquire customized or unusual planes
at the time of the study is obviated.
4D flow techniques represent another approach to

image acquisition [17–19] in CHD and supplemental in-
formation on blood flow can be very helpful. However,

Fig. 6 Multiplanar reformats of FE-MUSIC in a 3-month old girl (7.7 kg) with Tetralogy of Fallot (ToF) and a double aortic arch. Characteristic features of
ToF (a, Additional file 3: Online video 6a) including right ventricular (RV) hypertrophy with dynamic RV outflow tract obstruction, an overriding aorta,
and a perimembranous ventricular septal defect (black asterisk) are clearly visualized on dynamic review. Both proximal courses of the left and right
coronary arteries (a, white arrow; Additional file 3: Online video 6a) are also well visualized; the distal right coronary artery can be seen coursing along
the right ventricle. Additional file 3: Online video 6a exemplifies the value of dynamic, multiphase imaging in the setting of coronary visualization. The
large ventricular septal defect (a, black asterisk; b, white arrow) and the complete vascular ring from a double aortic arch (c, white arrows) are
clearly delineated. There is no dynamic compression of the trachea. Colorized volume rendered cine MUSIC images (Additional file 3: Online
video 6b) illustrate the dynamic complex extra-cardiac vascular anatomy and its relationship to intra-cardiac structures, which can be used to
provide a more concrete image of the anatomic problem and explain a clearly complex case to parents and guardians (d, Additional file 3:
Online video 6c). There is anomalous pulmonary venous drainage with the left innominate vein (black arrow, d) dipping inferiorly before
joining the right innominate vein (white arrowhead, d) to form a right-sided superior vena cava. The left superior vertical vein (black arrowhead,
d) joins the low bridging left innominate vein (black arrow, d) and the left superior pulmonary vein (white arrow, d), which forms the confluence
of the superior pulmonary venous trunk (Additional file 3: Online video 6b, left panel). There is also a double aortic arch, which forms a complete
vascular ring without tracheal compression (Additional file 3: Online video 6b, right panel). The FE-MUSIC data were further processed for 3D
printing (photographed in d, Additional file 3: Online video 6c). The patient subsequently underwent successful surgical repair
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with current 4D flow acquisitions, the requisite scan
time needed to achieve the same spatial and temporal
resolution as 4D MUSIC is greater by a factor of six or
more, such that spatial and temporal resolution is usually
dialed back with 4D flow [17]. Strategies for accelerated
image acquisition are constantly in evolution and these will
no doubt improve the performance of 4D flow techniques.
Similar acceleration approaches can also be applied to 4D
MUSIC such that it will likely remain proportionately
faster than 4D flow. In practice, both techniques are
complementary and it should not be necessary to choose
one over the other. Ferumoxytol supports higher CNR for
4D flow as it does for 4D MUSIC and it seems logical to
acquire both sets of data sequentially and to overlay the
4D velocity fields onto the high resolution dynamic anat-
omy of 4D MUSIC. While evaluation of 4D flow was not
the focus of this current work, our referring surgeons and
cardiologists had access to 4D flow images in the course
of clinical decision making. Systematic evaluation of accel-
erated, ferumoxytol-enhanced 4D MUSIC and 4D flow as
a single comprehensive technique for imaging of CHD is
the subject of ongoing work in our laboratory and others.
With modern CT technology, it has become possible

to generate 4D datasets at increasingly lower radiation
doses. However, the radiation dose with multi-phase CT
is proportionately greater than with single phase and
raises concerns in young children, especially those who
will likely require follow up studies. Nonetheless, clinical
decisions are best made for individual patients depend-
ing on the required information and where ultrafast, low
dose CT scanning is available, this may prove adequate
and appropriate for assessment of static anatomy such
as the site and size of aorto-pulmonary collateral vessels.
Although no ionizing radiation is involved with CMR,

repeated imaging of babies with traditional approaches
poses lifelong gadolinium exposure risks. In this regard,
ferumoxytol offers an attractive alternative to GBCAs.
Moreover, with the recent discontinuation of gadofosve-
set trisodium (Ablavar®), no blood pool CMR contrast
agent is available clinically. Although ferumoxytol is ap-
proved by the FDA for treatment of iron deficiency
anemia in adults with chronic kidney disease [20], as a
theranostic agent, ferumoxytol also has potential for high
fidelity steady state blood pool imaging because of its long
intravascular half-life and high r1 relaxivity [5, 21–26]. Fol-
lowing US FDA approval in 2009, ferumoxytol has been
used off-label [21, 22] as an alternative to GBCAs in pa-
tients with renal impairment [5, 24, 25, 27, 28]. In addition
to its unique properties, the elemental iron in ferumoxytol
is incorporated into the hematopoietic pathway once the
outer carbohydrate shell is degraded providing a thera-
peutic source of iron, unlike GBCAs which has been
shown to accumulate in biologic tissue [29] after repeated
exposure. In neonates and children, the therapeutic effects

of ferumoxytol may also be favorable as iron deficiency
anemia is common in this population [30]. However, in
light of a recent FDA warning regarding the rare potential
for fatal hypersensitivity reactions, the benefit to risk ratios
must be carefully weighed. To date, no major adverse
events have been associated with the diagnostic use of
ferumoxytol at our institution [31] and others [32, 33].
Moreover, in children, and particularly neonates, serious al-
lergic reactions of any type tend to be less common than in
adults (3–5.8% in children vs 6–10% in adults) [34] poten-
tially because of a less developed immune system [35, 36].
While it is incumbent on caregivers to offer the best

available options to patients and to inform management
decisions thoughtfully, additional precautionary processes
were implemented in our study. All of the patients had
protected airways from the start of the procedure and
hemodynamic monitoring was performed throughout the
exam. While no adverse events occurred in our study,
protocols were also in place to deal with them.
The focus on our current study is on the 4D MUSIC

sequence in CHD for high resolution, dynamic imaging
as opposed to the use of ferumoxytol as a contrast agent
to replace gadolinium for all CMR applications. With
this in mind, our study does have limitations. First, we
did not directly compare GBCA-enhanced vs FE-CMRA
in the same population for ethical and practical reasons.
Second, we did not perform a systematic comparison be-
tween ferumoxytol and another blood pool contrast
agent such as gadofosveset trisodium. Additionally, due
to the retrospective and non-randomized nature of our
study design, there is selection bias – the neonates and
infants studied generally represent the most complex
cases and frequently with the highest degree of acuity.
Because our study is retrospective and the investigation
was implemented as a pragmatic clinical study in the
context of routine clinical care, the surgical team was
not blinded to the FE-MUSIC findings and an independ-
ent panel was not formed beforehand to assess the degree
of divergence in the surgical plan pre and post FE-MUSIC
results. Although preliminary work supports good agree-
ment in volumetry between MUSIC and conventional 2D
multi-slice SSFP cine imaging [1], effort is currently
underway to systematically evaluate precision and re-
producibility of volumetric measurements from 4D
MUSIC. Our sample size is also modest. However, a
multi-center clinical study is underway to systematically
evaluate FE-MUSIC in CHD imaging and to adequately
address these concerns. In spite of these limitations,
our work demonstrates promising clinical evidence for
using FE-MUSIC in neonates and infants with a wide
range of CHD. Our findings also support the need for
continued work towards the development and valid-
ation of streamlined, comprehensive techniques for
imaging CHD.
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Conclusion
In neonates and infants with CHD, FE-MUSIC at 3.0 T
depicts detailed, dynamic 4D anatomy reliably and with
high clinical value, without the need for breath holding,
contrast bolus timing or prescription of customized im-
aging planes. Further studies are warranted to assess the
performance of FE-MUSIC across field strengths and
imaging platforms.
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