Skip to main content
Figure 31 | Journal of Cardiovascular Magnetic Resonance

Figure 31

From: Cardiovascular magnetic resonance physics for clinicians: part II

Figure 31

Respiratory gating and navigator echoes. This figure illustrates the principle behind the use of navigator echoes to gate the image data acquisition according to a particular time period within the respiratory cycle. The diagram in (a) shows a cardiac triggered data acquisition with a trigger delay chosen at mid-diastole to minimise the effect of cardiac motion. A curve representing the diaphragm position during respiratory motion is shown above. The effect of respiratory motion is limited by gating the data acquisition, so that image data is only accepted when the diaphragm position lies within a predefined ‘window’ corresponding to end expiration. A navigator pulse (shown in red) is applied immediately before the image data acquisition to excite a column of tissue cutting through the right hemi-diaphragm at right angles (b). The resultant navigator echo is frequency encoded along the length of the column and the navigator echo signal is analysed using a Fourier transform to produce a line of signal. The line signal from each successive R-R interval is added to a navigator display. A computer algorithm detects where the signal intensity changes from a high value (liver) to a low value (lung), representative of the diaphragm position. Where the diaphragm position falls within a predefined gating window the image data acquisition is accepted (indicated by the green dashes). Where the diaphragm position falls outside the gating window the data acquired is rejected and the acquisition is repeated until the diaphragm position again falls within the gating window.

Back to article page