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Abstract
Background
The purpose of this meta-analysis was to comprehensively investigate the diagnostic ability of 1.5 T and 3.0 T whole heart coronary angiography (WHCA) to detect significant coronary artery disease (CAD) on X-ray coronary angiography.


Methods
A literature search of electronic databases, including PubMed, Web of Science Core Collection, Cochrane advanced search, and EMBASE, was performed to retrieve and integrate articles showing significant CAD detectability of 1.5 and 3.0 T WHCA.

Results
Data from 1899 patients from 34 studies were included in the meta-analysis. 1.5 T WHCA had a summary area under ROC of 0.88 in the patient-based analysis, 0.90 in the vessel-based analysis, and 0.92 in the segment-based analysis. These values for 3.0 T WHCA were 0.94, 0.95, 0.96, respectively. Contrast-enhanced 3.0 T WHCA had significantly higher specificity than non-contrast-enhanced 1.5 T WHCA on a patient-based analysis (0.87, 95% CI 0.80–0.92 vs. 0.74, 95% CI 0.64–0.82, P = 0.02). There were no differences in diagnostic performance on a patient-based analysis by use of vasodilators, beta-blockers or between Asian and Western countries.

Conclusions
The diagnostic performance of WHCA was deemed satisfactory, with contrast-enhanced 3.0 T WHCA exhibiting higher specificity compared to non-contrast-enhanced 1.5 T WHCA in a patient-based analysis. There were no significant differences in diagnostic performance on a patient-based analysis in terms of vasodilator or beta-blocker use, nor between Asian and Western countries. However, further large-scale multicentre studies are crucial for the widespread global adoption of WHCA.
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Background
Coronary artery disease (CAD) is a primary cause of mortality in the United States, and ranks as the third most common cause of death globally, responsible for 17.8 million deaths annually [1]. X-ray coronary angiography is utilized to diagnose CAD; however, it is an invasive procedure, and its complications cannot be overlooked. Presently, coronary computed tomography (CT) is widely employed in clinical practice as a non-invasive examination method. Coronary artery CT boasts a high negative predictive value and is efficacious in ruling out CAD [2]. Furthermore, there is evidence that evaluating coronary plaque [3] and implementing CT-based strategies can enhance prognosis [4]. Additionally, cost-effectiveness is also favorable in low to moderate prevalence rates [5]. Despite the utility of coronary CT being extremely high, it does have several drawbacks including radiation exposure, the administration of contrast agent, and difficulties in utilizing the method for highly calcified coronary arteries.

Whole heart coronary magnetic resonance angiography (WHCA) is considered as an alternative to coronary CT, possessing advantages over CT such as no radiation exposure, less susceptibility to coronary calcification [6]. Prior meta-analyses have been conducted on the diagnostic capabilities of WHCA [7, 8]. However, it should be noted that non-contrast imaging is recommended for 1.5 T WHCA, whereas contrast imaging is recommended for 3.0 T WHCA. The rationale behind this recommendation is that in 1.5 T WHCA, it is difficult to achieve increased arterial contrast with the administration of contrast agents [9]. In contrast, in 3.0 T WHCA, the use of steady state free precession (SSFP) is challenging due to banding artifacts caused by specific absorption ratio (SAR) limitations and B1 inhomogeneity. Therefore, it is generally advised to use gadolinium based contrast agents in gradient echo (GRE) sequence for 3.0 T WHCA [10]. To date, no meta-analysis has compared the diagnostic accuracy of non-contrast 1.5 T WHCA and contrast-enhanced 3.0 T WHCA. There is also debate about the need for premedication (vasodilators and beta-blockers) prior to imaging and differences in utilization by region (Western vs. Asian countries). These issues have not been evaluated in prior meta-analyses. Therefore, the purpose of this study was to perform a comprehensive meta-analysis on the diagnostic accuracy of WHCA for detecting significant CAD on X-ray coronary angiography and to evaluate the differences in magnetic field strength and use of contrast agent, with and without premedication, and including differences in diagnostic accuracy by region.

Methods
A systematic literature search was conducted in accordance with the guidelines established by the Cochrane Collaboration and the Preferred Reporting Items for Systematic Review and Meta-analysis (PRISMA) on November 10, 2022, utilizing databases such as PubMed, Web of Science Core Collection, Cochrane advanced search, and EMBASE. Search terms utilized included “whole heart coronary magnetic resonance angiography”, “WHCA”, “MRI”, “coronary artery disease”, “diagnostic accuracy” (as outlined in Additional file 1: Material S1). Two evaluators (SK and MA) independently assessed the validity of all titles and abstracts, followed by a review of the relevant complete peer-reviewed studies; any discrepancies were resolved by a third reviewer. The protocol for this study was registered with the University Medical Information Network (registration number: UMIN000050172) and did not require institutional review board approval as it was a meta-analysis and did not involve clinical patient information. Both prospective and retrospective studies that included diagnostic performance of coronary WHCA at 1.5 T and 3.0 T for detecting significant CAD on X-ray coronary angiography were included for data extraction, while literature such as case reports, animal studies, and non-English language articles were excluded.

Outcome measures
The primary objective of this meta-analysis was to estimate the diagnostic performance of coronary WHCA for significant coronary artery stenosis in known or suspected CAD using X-ray coronary angiography as the gold standard and to compare its value at 1.5 T and 3.0 T. Two reviewers (SK and MA) were invited to review the results of the studies, extracting the following study characteristics: author name, year of publication, country, patient disease, age, gender, magnetic resonance imaging (MRI) parameters such as magnetic field strength, sequence used, producer of MRI equipment, MRI coil information, use of gadolinium contrast, and examination time. Definition of significant CAD on X-ray coronary angiogram was also investigated. A meta-analysis of the diagnostic accuracy of coronary WHCA for significant coronary artery stenosis was performed using summary receiver operating characteristics (ROC) analysis. The analysis included the following. (1) All studies including the diagnostic performance of 1.5 T and 3.0 T were used to compare their diagnostic performance. The following sub-analyses were performed: 1. non-contrast enhanced 1.5 T WHCA vs. contrast enhanced 3.0 T WHCA, 2. drug administration (vasodilators and beta-blockers), 3. Comparison between Asian and Western countries. The Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2) were utilized to assess risk of bias [11].

Data integration and statistical analysis
Meta-analysis was conducted utilizing RevMan 5.41 (Cochrane Collaboration, London, UK) and R Statistical Software (v3.5.1, Boston, MA, USA). The diagnostic accuracy of WHCA was evaluated through summary ROC analysis. Three levels of diagnostic accuracy were analyzed: patient-based, vessel-based, and segment-based. Sensitivity and specificity were derived from ROC curves and the diagnostic performance was compared at magnetic field strengths of 1.5 T and 3.0 T. A random-effects model was employed to estimate imaging time by coil type. The inverse variance method was utilized to weight each study in the meta-analysis. Heterogeneity was indicated by I2, with 0% indicating no heterogeneity and 100% indicating strong heterogeneity [12]. P < 0.05 was considered statistically significant.


Results
Ultimately, 34 eligible papers were selected from a pool of 140 candidate papers, and data from 1899 patients were consolidated (Fig. 1) [13–45]. The characteristics of the included studies are summarized in Table 1. The publication years of these studies ranged from 2005 to 2022; 23 of these studies utilized 1.5 T MRI technology [13–25, 28, 30, 31, 33–37, 44–46], while 11 utilized 3.0 T technology [26, 27, 29, 32, 38–43, 45]. The countries of publication were diverse, with China having 11 reports [18, 26, 32, 34, 38, 39, 41–45], Germany having 8 reports [13, 15, 19, 25, 27, 29, 31, 35], Japan having 7 reports [14, 17, 24, 28, 30, 37, 40], United Kingdom [21, 46] having two reports and various other countries such as the United States [20], Korea [16], Switzerland [36], Portugal [33], Belgium [23], and Turkey [22] having one report each. In terms of study design, one study employed a prospective multicenter design [28], while 19 employed prospective single-center designs [13–15, 17, 21, 23, 25–27, 29–32, 37–39, 43–46]. The remaining studies were retrospective in nature. The MRI sequences utilized in these studies were steady state free precession [13–25, 28, 30, 31, 33–37, 40, 44, 46] or gradient-echo [26, 27, 29, 32, 38, 39, 41–43, 45]. Twenty-three studies demonstrated the diagnostic capability of 1.5 T WHCA [13–25, 28, 30, 31, 33–37, 44, 46], three of which used contrast [31, 33, 36] (Table 2). That is, the majority of studies (87%; 20/23) performed 1.5 T WHCA imaging without contrast. Eleven studies showed diagnostic performance of 3.0 T WHCA [26, 27, 29, 32, 38–41, 43, 45], of which two studies used non-contrast imaging [29, 45]. In other words, the majority of studies (82%, 9/11) evaluated the diagnostic performance of 3.0 T with gadolinium contrast administration. In terms of sequence used, all studies at 1.5 T used SSFP (100%, 23/23). In contrast, only one study at 3.0 T used SSFP [40], while the others used GRE-based sequencing (91%, 10/11). The information of pre-pulse and fat suppression was summarized in Table 2. The definition of significant CAD was luminal narrowing ≥ 50% in almost all studies (97%, 33/34). Only one study defined significant CAD as “luminal narrowing ≥ 90%, ≥ 50% in LMT, or FFR ≤ 0.80” [33]. In terms of cardiac coils, 32-channel coils were employed in 11 reports [29–32, 37, 39, 40, 42, 44–46]. Vasodilators such as sublingual nitroglycerin were utilized in 18 studies [14, 15, 17, 18, 24, 26, 27, 29–35, 37, 40, 41, 46], and beta-blockers were utilized in 12 studies [18, 19, 22, 26, 29, 32–35, 41, 43, 46]. The results of QUADAS-2 are summarized in Additional file 1: Material S2.[image: ]
Fig. 1Preferred reporting items for systematic reviews and meta-analyses flow diagram

Table 1Characteristics of included studies


	Study
	Country
	Study design
	No of patients
	Male, %
	Age
	Heart rate
	BMI
	Definition of CAD
	CAD prevalence, %

	Jahnke_2005
	Germany
	Single prospective
	32
	78
	59 ± 10
	67 ± 12
	27.2 + 4.2
	 ≥ 50%
	50

	Sakuma_2005
	Japan
	Single prospective
	20
	80
	65 ± 12
	70 ± 12
	N/A
	 ≥ 50%
	60

	Dewey_2006
	Germany
	Single prospective
	129
	74
	64 ± 8
	N/A
	27.0 ± 3.5
	 ≥ 50%
	56

	Kim_2006
	Korea
	Single
	21
	71
	54.2
	66.2 ± 14.6
	N/A
	 ≥ 50%
	N/A

	Sakuma_2006
	Japan
	Single prospective
	113
	87
	66 ± 11
	72 ± 13
	N/A
	 ≥ 50%
	45

	Liu_2007
	China
	Single
	18
	66
	56
	N/A
	N/A
	 ≥ 50%
	36 coronary segments

	Maintz_2007
	Germany
	Single
	20
	75
	58 ± 9.7
	N/A
	N/A
	 ≥ 50%
	23 coronary segments

	McCarthy_2007
	USA
	Single
	33
	66
	57
	N/A
	N/A
	 ≥ 50%
	52 coronary segments

	Klein_2008
	UK
	Single prospective
	46
	48
	60 ± 10
	73 ± 15
	27.6 ± 4.1
	 ≥ 50%
	48

	Oncel_2008
	Turkey
	Single
	18
	72
	56.3
	62 ± 10
	N/A
	 ≥ 50%
	61

	Pouleur_2008
	Belgium
	Single prospective
	77
	73
	61 ± 14
	69 ± 15
	N/A
	 ≥ 50%
	22

	Kunimasa_2009
	Japan
	Single
	43
	77
	65 ± 13
	66 ± 12
	N/A
	 ≥ 50%
	77

	Langer_2009
	Germany
	Single prospective
	68
	56
	63.6 ± 11
	64.9 ± 13
	27.6 ± 3.5
	 ≥ 50%
	38

	Yang_2009
	China
	Single prospective
	62
	48
	61 ± 11
	67 ± 7
	24.1 ± 2.8
	 ≥ 50%
	55

	Chen_2010
	Germany
	Single prospective
	67
	67
	60 ± 10
	65 ± 9
	25.6 + 4.5
	 ≥ 50%
	55

	Kato_2010
	Japan
	Multicenter prospective
	127
	44
	67 ± 9
	68 ± 12
	24 + 4
	 ≥ 50%
	44

	Hamdan_2011
	Germany
	Single prospective
	110
	70
	65 ± 8
	63 ± 8
	27 ± 3.9
	 ≥ 50%
	56

	Nagata_2011
	Japan
	Single prospective
	67
	58
	69 ± 13
	72 ± 10
	23 ± 3
	 ≥ 50%
	58

	Wagner_2011
	Germany
	Single prospective
	27
	13
	55 ± 7
	N/A
	N/A
	 ≥ 50%
	67

	Yang_2012
	China
	Single prospective
	101
	48
	58 ± 11
	66 ± 8
	24 ± 3
	 ≥ 50%
	49

	Bettencourt_2013
	Portugal
	Single
	43
	65
	61 ± 8
	65 ± 6
	28.4 ± 5.43
	 ≥ 90%, ≥ 50% in LMT, or FFR ≤ 0.80
	56

	Cheng_2013
	China
	Single
	30
	70
	51.6 (mean)
	N/A
	N/A
	 ≥ 50%
	N/A

	Heer_2013
	Germany
	Single
	59
	61
	59 ± 13
	62 ± 8
	25.9 ± 3.8
	 ≥ 50%
	51

	Piccini_2014
	Switzerland
	Single
	31
	68
	49 ± 21
	N/A
	24.3 ± 4.6
	 ≥ 50%
	68

	Yonezawa_2014
	Japan
	Single prospective
	62
	74
	69 ± 13
	73 ± 10
	23 ± 3
	 ≥ 50%
	53

	Yun_2014
	China
	Single prospective
	53
	86
	58.7 ± 9.1
	65 ± 11
	N/A
	 ≥ 50%
	N/A

	He_2016
	China
	Single prospective
	39
	77
	57 ± 10
	70 ± 7
	N/A
	 ≥ 50%
	59

	Namba_2016
	Japan
	Single retrospective
	24
	58
	62.2 ± 16
	71.0 ± 14.1
	24.7 ± 3.6
	 ≥ 50%
	50

	Chen_2018
	China
	Single
	40
	88
	58.1 ± 10.9
	64.8 ± 9.2
	N/A
	 ≥ 50%
	78

	Zhang_2018
	China
	Single
	46
	72
	54 ± 12
	67 ± 10
	N/A
	 ≥ 50%
	74

	Sun_2020
	China
	Single prospective
	51
	75
	60.2 ± 6.7
	65 ± 8
	24.8 ± 2.1
	 ≥ 50%
	61

	Lin_2021
	China
	Single prospective
	45
	67
	58 ± 8
	66 ± 9
	26.1 ± 3.7
	 ≥ 50%
	73

	Lu_2022
	China
	Single prospective
	82
	65
	58 ± 10
	68.79 ± 10.64
	24.94 ± 3.78
	 ≥ 50%
	45

	Nazir_2022
	UK
	Single prospective
	45
	67
	62 ± 10
	61 ± 8
	31 ± 6
	 ≥ 50%
	42


Age, heart rate and BMI are mean ± standard deviation
BMI body mass index, CAD coronary artery disease, FFR fractional flow reserve, SSFP steady state free precession, N/A, not applicable


Table 2Information of magnetic resonance imaging


	Study
	Scanner manufacturer
	Sequence
	Magnetic field strength (T)
	Coil channels
	Fat suppression
	Pre-pulse
	Vasodilatory premedication
	Contrast agent
	Beta-blocker
	Scan time (min)

	Jahnke_2005
	Philips
	SSFP
	1.5
	5
	Yes
	T2 preparation
	No
	No
	No
	12 ± 2

	Sakuma_2005
	Philips
	SSFP
	1.5
	5
	Yes
	T2 preparation
	Yes
	No
	No
	13.8 ± 3.8

	Dewey_2006
	Siemens Medical Solutions
	SSFP
	1.5
	12
	Yes
	None
	Yes
	No
	No
	N/A

	Kim_2006
	Philips Medical Systems
	SSFP
	1.5
	Synergy cardiac coil
	Yes (SPIR)
	T2 preparation
	N/A
	N/A
	N/A
	9.3 ± 2.1

	Sakuma_2006
	Philips
	SSFP
	1.5
	5
	Yes
	T2 preparation
	Yes
	No
	No
	12.9 ± 4.3

	Liu_2007
	GE Healthcare
	SSFP
	1.5
	6
	Yes
	T2 preparation
	Yes
	No
	Yes
	N/A

	Maintz_2007
	Philips
	SSFP
	1.5
	5
	Yes (SPIR)
	T2 preparation
	No
	No
	Yes
	14

	McCarthy_2007
	Siemens Medical Solutions
	SSFP
	1.5
	12
	Yes
	N/A
	No
	No
	No
	45

	Klein_2008
	Philips
	SSFP
	1.5
	5
	Yes
	T2 preparation
	No
	No
	No
	6.3 ± 1.6

	Oncel_2008
	Siemens
	SSFP
	1.5
	N/A
	Yes
	T2 preparation
	No
	No
	Yes
	13

	Pouleur_2008
	Philips
	SSFP
	1.5
	5
	Yes
	T2 preparation
	No
	No
	No
	20 ± 4

	Kunimasa_2009
	Philips
	SSFP
	1.5
	5
	N/A
	T2 preparation
	Yes
	No
	No
	9 ± 3.1

	Langer_2009
	Philips
	SSFP
	1.5
	5
	Yes (SPIR)
	T2 preparation
	No
	No
	No
	N/A

	Yang_2009
	Siemens
	GRE
	3
	12
	Yes
	Inversion recovery
	Yes
	Yes
	Yes
	9 ± 1.9

	Chen_2010
	Siemens
	GRE
	3
	12
	Yes
	Inversion recovery
	Yes
	Yes
	No
	9.6 ± 3.2

	Kato_2010
	Philips
	SSFP
	1.5
	5
	Yes
	T2 preparation
	No
	No
	No
	9.5 ± 3.5

	Hamdan_2011
	Philips
	GRE
	3
	32
	Yes
	T2 preparation
	Yes
	No
	Yes
	17 ± 4.7

	Nagata_2011
	Philips
	SSFP
	1.5
	32
	Yes
	T2 preparation
	Yes
	No
	No
	6.2 ± 2.8

	Wagner_2011
	Siemens
	SSFP
	1.5
	32
	Yes
	T2 preparation
	Yes
	Yes
	No
	9.1 ± 2

	Yang_2012
	Siemens
	GRE
	3
	32
	N/A
	Inversion recovery
	Yes
	Yes
	Yes
	7 ± 1.8

	Bettencourt_2013
	Siemens
	SSFP
	1.5
	12
	Yes
	T2 preparation
	Yes
	Yes
	Yes
	17.9 ± 4.6

	Cheng_2013
	General Electric Healthcare Technologies
	SSFP
	1.5
	8
	Yes
	T2 preparation
	Yes
	No
	Yes
	N/A

	Heer_2013
	GE
	SSFP
	1.5
	8
	Yes
	T2 preparation
	Yes
	No
	Yes
	14.3 ± 6.2

	Piccini_2014
	Siemens
	SSFP
	1.5
	30
	Yes
	T2 preparation
	N/A
	Yes
	No
	7.8 ± 1.9

	Yonezawa_2014
	Philips
	SSFP
	1.5
	32
	Yes
	T2 preparation
	Yes
	No
	No
	6.8 ± 2.6

	Yun_2014
	Siemens
	GRE
	3
	12
	Yes (SPIR)
	Inversion recovery
	No
	Yes
	No
	10.3 ± 2.5

	He_2016
	Siemens
	GRE
	3
	32
	Yes
	Inversion recovery
	No
	Yes
	No
	7.8 ± 0.8

	Namba_2016
	Philips
	SSFP
	3
	32
	Yes (SPIR)
	T2 preparation
	Yes
	Yes
	No
	278 ± 43 s

	Chen_2018
	Siemens
	GRE
	3
	12
	Yes
	Inversion recovery
	Yes
	Yes
	Yes
	9.5 ± 3.1

	Zhang_2018
	Siemens
	GRE
	3
	32
	Yes
	Inversion recovery
	N/A
	Yes
	No
	10.4 ± 3.2

	Sun_2020
	Siemens
	GRE
	3
	12
	Yes
	Inversion recovery
	 	Yes
	Yes
	9.5 ± 3.1

	Lin_2021
	Philips
	SSFP
	1.5
	32
	Yes (SPIR)
	T2 preparation
	No
	No
	No
	10.2 ± 2.4

	Lu_2022
	Philips
	GRE
	3
	32
	N/A
	T2 preparation
	No
	No
	No
	7.88 ± 2.78

	Nazir_2022
	Siemens
	SSFP
	1.5
	32
	Yes (SPIR)
	T2 preparation
	Yes
	No
	Yes
	10.4 ± 2.1


BMI body mass index, CAD coronary artery disease, GRE gradient echo, SSFP steady state free precession, SPIR spectral presaturation with inversion recovery, N/A not applicable



Diagnostic accuracy of WHCA—1.5 T vs. 3.0 T
Figure 2 illustrates the summary receiver operating characteristic analysis of the ability of 1.5 T WHCA to detect significant stenosis when the gold standard is significant stenosis on X-ray coronary angiography. The area under the curve was 0.88 for patient-based analysis (N = 979 patients from 16 studies), 0.90 for vessel-based analysis (N = 2905 vessels from 15 studies), and 0.92 for segment-based analysis (N = 7171 segments from 16 studies). Figure 3 illustrates the summary receiver operating characteristic analysis of the ability of 3.0 T WHCA to detect significant stenosis. The area under the curve was 0.94 for patient-based analysis (N = 604 patients from 9 studies) and 0.95 for vessel-based analysis (N = 2032 vessels from 9 studies), and 0.96 for segment-based analysis (N = 4795 segments from 8 studies). Table 3 summarizes the sensitivity and specificity calculated from the receiver operating characteristic curves. The 3.0 T WHCA technique had significantly higher sensitivity in the segment-based analysis compared to 1.5 T (0.88, 95% confidence interval (CI) 0.84–0.91 vs. 0.80, 95% CI 0.72–0.86, P = 0.04). The individual diagnostic performance of each study is summarized in Additional file 1: Materials S3–S5.[image: ]
Fig. 2Summary ROC curve of 1.5 T whole-heart coronary MRA

[image: ]
Fig. 3Summary ROC curve of 3.0 T whole-heart coronary MRA

Table 3Sensitivity and specificity of whole heart coronary MRA for the detection of significant coronary stenosis on X-ray coronary angiogram


	 	1.5 T WHCA (N = 23 studies)
	3.0 T WHCA (N = 11 studies)
	P-value*

	Patient-based analysis

	 Sensitivity
	0.86 (0.80–0.90)
	0.91 (0.87–0.94)
	0.10

	 Specificity
	0.73 (0.65–0.81)
	0.83 (0.75–0.89)
	0.06

	Vessel-based analysis

	 Sensitivity
	0.84 (0.77–0.88)
	0.89 (0.85–0.92)
	0.13

	 Specificity
	0.83 (0.75–0.89)
	0.90 (0.83–0.92)
	0.09

	Segment-based analysis

	 Sensitivity
	0.80 (0.72–0.86)
	0.88 (0.84–0.91)
	0.04

	 Specificity
	0.92 (0.87–0.95)
	0.95 (0.94–0.96)
	0.25


Data are weighted mean ± 95% confidence interval
WHCA whole heart coronary magnetic resonance imaging, MRA magnetic resonance imaging
*P-value represents the significance of difference between 1.5 and 3.0 Tesla WHCA




Sub-analysis of diagnostic performance of WHCA
As previously stated, 1.5 T WHCA is typically performed without the use of gadolinium contrast, while 3.0 T WHCA is typically performed with contrast administration. Keeping this in mind, we conducted a comparison of the diagnostic performance of non-contrast 1.5 T WHCA and contrast-enhanced 3.0 T WHCA. The 3.0 T WHCA technique demonstrated significantly higher specificity compared to the non-contrast enhanced 1.5 T WHCA on a patient-based analysis (Table 4). Additionally, we performed a subgroup analysis based on the presence or absence of drug use and geographical difference (Asian and Western countries). There were no differences in diagnostic performance on a patient-based analysis were observed in the use of vasodilators and beta-blockers (Tables 5, 6) or comparison between Asian and Western countries (Table 7). However, in the vessel-based analysis, the sensitivity of studies using the vasodilator was lower than those not using it (P = 0.03) (Table 5). Mean heart rate in the study with beta-blocker administration was 64.6 bpm (95% CI 63.9–65.3 bpm) and in the study without beta-blocker administration mean heart rate was 68.6 bpm (95% CI 67.9–69.2 bpm), a significant difference was found between the two groups (P < 0.001). There was a significant difference in heart rate between trials with and without beta-blockers, but no difference in diagnostic performance. In the regional analysis, the body mass index (BMI) reported in Western countries was significantly higher than that in Asian countries (27.0 kg/m2, 95% CI 26.6–27.3 vs. 23.7 kg/m2, 95% CI 23.3–24.1, P < 0.001).Table 4Comparison of diagnostic performance of non-contrast 1.5 T WHCA and contrast-enhanced 3.0 T WHCA for the detection of significant CAD


	 	Non-contrast 1.5 T WHCA (N = 20 studies)
	Contrast-enhanced 3.0 T WHCA (N = 9 studies)
	P-value

	Patient-based analysis

	 Sensitivity
	0.86 (0.80–0.90)
	0.92 (0.87–0.96)
	0.07

	 Specificity
	0.74 (0.64–0.82)
	0.87 (0.80–0.92)
	0.02

	 AUC
	0.88
	0.94
	N/A

	Vessel-based analysis

	 Sensitivity
	0.84 (0.77–0.90)
	0.91 (0.86–0.94)
	0.07

	 Specificity
	0.86 (0.77–0.92)
	0.91 (0.89–0.93)
	0.20

	 AUC
	0.91
	0.95
	N/A

	Segment-based analysis

	 Sensitivity
	0.82 (0.75–0.88)
	0.88 (0.85–0.91)
	0.1

	 Specificity
	0.93 (0.88–0.95)
	0.95 (0.94–0.96)
	0.28

	 AUC
	0.93
	0.95
	N/A


Data are weighted mean ± 95% confidence interval
AUC area under the curve, CAD coronary artery disease, WHCA whole heart coronary magnetic resonance angiography


Table 5A comparative analysis of sensitivity, specificity, and AUC between WHCA with and without vasodilators


	 	1.5 T WHCA with vasodilator (N = 12 studies)
	1.5 T WHCA without vasodilator (N = 9 studies)
	P-value

	Patient-based analysis

	 Sensitivity
	0.86 (0.80–0.90)
	0.88 (0.75–0.95)
	0.85

	 Specificity
	0.76 (0.69–0.82)
	0.65 (0.58–0.82)
	0.11

	 AUC
	0.88
	0.86
	N/A

	Vessel-based analysis

	 Sensitivity
	0.81 (0.74–0.87)
	0.91 (0.83–0.96)
	0.03

	 Specificity
	0.87 (0.79–0.92)
	0.73 (0.50–0.88)
	0.17

	 AUC
	0.9
	0.92
	N/A

	Segment-based analysis

	 Sensitivity
	0.84 (0.79–0.87)
	0.80 (0.65–0.89)
	0.54

	 Specificity
	0.92 (0.87–0.96)
	0.93 (0.85–0.96)
	0.78

	 AUC
	0.85
	0.93
	N/A


Data are weighted mean ± 95% confidence interval
AUC area under the curve, WHCA whole heart coronary magnetic resonance angiography


Table 6A comparative analysis of sensitivity, specificity, and AUC between WHCA with and without beta-blockers


	 	1.5 T WHCA with beta-blocker (N = 7 studies)
	1.5 T WHCA without beta-blocker (N = 15 studies)
	P-value

	Patient-based analysis

	 Sensitivity
	0.91 (0.81–0.96)
	0.84 (0.78–0.89)
	0.14

	 Specificity
	0.69 (0.57–0.78)
	0.75 (0.65–0.83)
	0.39

	 AUC
	0.89
	0.87
	N/A

	Vessel-based analysis

	 Sensitivity
	0.85 (0.77–0.91)
	0.83 (0.75–0.89)
	0.69

	 Specificity
	0.82 (0.70–0.89)
	0.85 (0.75–0.91)
	0.63

	 AUC
	0.89
	0.9
	N/A

	Segment-based analysis

	 Sensitivity
	0.84 (0.77–0.89)
	0.78 (0.66–0.87)
	0.33

	 Specificity
	0.91 (0.83–0.95)
	0.93 (0.87–0.96)
	0.6

	 AUC
	0.9
	0.93
	N/A


Data are weighted mean ± 95% confidence interval
AUC area under the curve, WHCA whole heart coronary magnetic resonance angiography


Table 7A comparative analysis of sensitivity, specificity, and AUC between Asian and Western countries


	 	1.5 T WHCA (Asian countries) (N = 10 studies)
	1.5 T WHCA (Western countries) (N = 13 studies)
	P-value

	Patient-based analysis

	 Sensitivity
	0.86 (0.80–0.90)
	0.84 (0.75–0.90)
	0.66

	 Specificity
	0.89 (0.78–0.95)
	0.81 (0.62–0.78)
	0.17

	 AUC
	0.9
	0.84
	N/A

	Vessel-based analysis

	 Sensitivity
	0.84 (0.77–0.89)
	0.81 (0.70–0.88)
	0.58

	 Specificity
	0.84 (0.74–0.90)
	0.79 (0.71–0.85)
	0.35

	 AUC
	0.91
	0.86
	N/A

	Segment-based analysis

	 Sensitivity
	0.85 (0.81–0.88)
	0.76 (0.61–0.86)
	0.17

	 Specificity
	0.93 (0.85–0.97)
	0.91 (0.86–0.94)
	0.59

	 AUC
	0.87
	0.92
	N/A


Data are weighted mean ± 95% confidence interval
AUC area under the curve, WHCA whole heart coronary magnetic resonance angiography





Discussion
The main findings of this study are as follows: Receiver operating characteristic analysis showed that the 3 T field strength was superior in detecting significant coronary arteries compared to the 1.5 T. In addition, a direct comparison of non-contrast 1.5 T WHCA and contrast-enhanced 3.0 T WHCA was performed as a practical comparison, with the latter showing significantly higher specificity on a patient-based analysis. Subgroup analyses also showed no significant difference in diagnostic performance of 1.5 T WHCA in terms of the use of vasodilators and beta-blockers on a patient-based analysis. Although BMI was higher in Western patients compared to Asian patients, there was no difference in the diagnostic performance of the 1.5 T WHCA. These results suggest that WHCA is useful for noninvasive detection of significant CAD.
WHCA is well-established as a non-invasive method for the screening of CAD and possesses a number of advantages, such as the absence of ionizing radiation exposure, decreased susceptibility to calcification, and the lack of a requirement for contrast agent administration at 1.5 T. However, there is limited evidence for its clinical utility. To date, numerous studies have utilized X-ray coronary angiography as the gold standard, yet the majority of these studies have been conducted on small patient populations at a single institution. The only prospective, multi-center study was conducted in Japan and reported a sensitivity of 88% and specificity of 72% for 1.5 T WHCA [28]. Unfortunately, there have been no further multi-center studies since. Additionally, 3 T MR is often performed utilizing the gradient echo method, which necessitates the administration of a contrast agent [26, 27, 32, 38–43]. After contrast agent administration, 3 T WHCA provides a higher signal-to-noise ratio compared to 1.5 T WHCA and has been reported to have high diagnostic performance for the detection of coronary artery stenosis. However, one of the major advantages of MRI, the lack of requirement for contrast agent administration, is lost with 3 T WHCA. Recently, attempts have been made to perform non-contrast 3 T WHCA imaging, with promising results, but the number of reports on this technique is limited [29, 45]. The administration of a gadolinium contrast agent is necessary for 3 T WHCA due to the difficulties in using SSFP caused by SAR limitations and banding artifacts resulting from B1 inhomogeneity. Therefore, GRE is generally the preferred imaging sequence, but in order to achieve sufficient vascular contrast, the administration of gadolinium contrast is required [10]. As the imaging methods and diagnostic accuracy of 1.5 T and 3 T coronary WHCA are fundamentally different, separate meta-analyses are required. However, meta-analyses reported to date have included a mixture of 1.5 T and 3 T WHCA systems [7, 8]. Therefore, the primary objective of the present meta-analysis was to compare the diagnostic performance of WHCA with two different magnetic field strengths. Our results demonstrated that 3 T provided superior diagnostic performance when compared to 1.5 T, however, the number of reports regarding 3 T WHCA was small and there was a large bias in the countries and facilities where the studies were conducted (8/11 reports from China), making it difficult to generalize the obtained data. Further evidence accumulation and large-scale, prospective, multi-center studies are needed in the future to further investigate the diagnostic performance of 3 T MR. The clinical significance of the difference in diagnostic performance between 1.5 and 3.0 T WHCA is debatable. While 3.0 T WHCA exhibits slightly superior diagnostic performance, its major disadvantage of requiring the administration of gadolinium-based contrast agents negates its advantages over coronary CTA. Therefore, 1.5 T WHCA, which has unique benefits such as no radiation exposure and no need for gadolinium-based contrast administration, may be more clinically practical.
Another significant clinical query revolves around the necessity of nitroglycerin or beta-blockers in WHCA. Subgroup analyses of trials including and excluding both medications demonstrated comparable diagnostic performance in patient-based analyses, irrespective of drug usage (Tables 5, 6). Notably, there was no disparity in diagnostic performance, despite lower heart rates observed in studies employing beta-blockers. This could be attributed to the minimal absolute difference in heart rates (64.6 bpm vs. 68.6 bpm). Furthermore, although no distinctions were found in patient-based or segment-based analyses concerning vasodilator use, the sensitivity of studies employing vasodilators was lower than those that did not, as revealed by the vessel-based analysis (0.81 vs 0.91, P = 0.03, Table 5). Although the exact cause remains unclear, the vessel-based analysis exhibited higher AUC values for both groups, with an AUC of 0.90 for studies utilizing vasodilators and an AUC of 0.92 for studies without vasodilators. Given the trade-off relationship between sensitivity and specificity, the AUC does not appear to indicate a substantial disparity in diagnostic performance between studies with and without vasodilator use.
In addition, it is posited that coronary MRA is utilized by numerous institutions in Asian countries, with fewer employing it in Western countries. In light of this, we conducted a subgroup analysis of 1.5 T WHCA, taking into account the possibility of reduced diagnostic performance in larger patients due to their larger body size in Western countries (3.0 T studies could not be analyzed due to their small number). The findings indicated that BMI was significantly higher in patients from Western countries, but no significant differences in diagnostic performance were discerned between the two groups (Table 7). This suggests that WHCA can maintain its diagnostic efficacy even in patients with larger body mass.
The assessment of diagnostic efficiency between WHCA and coronary CT is a highly pertinent clinical inquiry. Nevertheless, there are few studies that have directly compared the two modalities. For instance, it has been demonstrated that WHCA is more diagnostically reliable than coronary CT in highly calcified segments of coronary arteries with calcification scores of 100 or above [18]. Conversely, other studies have found that 3 T WHCA has comparable diagnostic accuracy to CTA [43, 47]. Although such small-scale studies are dispersed, there is a lack of large-scale, coherent data, and it is challenging to statistically validate the comparison in this meta-analysis. Regardless, it is incontrovertible that coronary CT is the primary test for screening for CAD, owing to its spatial resolution, imaging duration, and reported high diagnostic accuracy. WHCA may serve as a viable alternative for patients for whom coronary CT cannot be performed, such as those with iodine allergies. Additionally, it should be utilized assertively in young patients who should not be exposed to radiation, female patients, and patients with coronary artery malformations [48] or coronary aneurysms in Kawasaki disease [49], which can be adequately evaluated with MRI resolution. Further accumulation of evidence on these points is also desirable.
Recent advancements in high-speed imaging techniques, such as compressed sensing, have the potential to shorten the imaging time for WHCA [50]. Furthermore, advancements in imaging techniques utilizing artificial intelligence are anticipated to enhance spatial resolution and decrease noise, thereby improving the image quality of WHCA. Deep learning reconstruction techniques have been used to improve the contrast-to-noise ratio and image quality of high-resolution WHCA [51]. A volunteer study has also demonstrated the potential of deep learning reconstruction for WHCA with sub-millimeter isotropic resolution at 3T [52]. These innovations in imaging technology are expected to further enhance the diagnostic accuracy of WHCA.
Limitations
First, many of the studies analysed were single centre studies with a limited number of cases, and the variability in study results cannot be ruled out. Prospective multicentre studies that include a larger number of patients are desirable. Second, we performed several subgroup analyses, but the number of included studies may be too small to produce statistically valid results.


Conclusions
The diagnostic performance of WHCA was deemed satisfactory, with contrast-enhanced 3.0 T WHCA exhibiting higher specificity compared to non-contrast-enhanced 1.5 T WHCA in a patient-based analysis. No significant differences in diagnostic performance were observed on a patient-based analysis based on the use of vasodilators, beta-blockers, or geographical regions (Asian and Western countries). Further large multicentre studies are imperative to facilitate the global adoption of WHCA.
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