Journal of Cardiovascular Magnetic Resonance

Meeting abstract

147 ³¹**P Cardiac spectroscopy at 3 T: T1 quantification** AbdEl-Monem M El-Sharkawy^{*1}, Michael Schär², Ronald Ouwerkerk³, Robert G Weiss⁴ and Paul A Bottomley³

Address: ¹Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, USA, ²Johns Hopkins University and Philips Medical Systems, Baltimore, USA, ³Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, USA and ⁴Cardiology Division, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, USA * Corresponding author

from 11th Annual SCMR Scientific Sessions Los Angeles, CA, USA. 1–3 February 2008

Published: 22 October 2008

Journal of Cardiovascular Magnetic Resonance 2008, 10(Suppl 1):A48 doi:10.1186/1532-429X-10-S1-A48

This abstract is available from: http://jcmr-online.com/content/10/S1/A48

© 2008 El-Sharkawy et al; licensee BioMed Central Ltd.

Introduction

Phosphorus (³¹P) MRS provides measures of the high energy metabolites, phosphocreatine (PCr) and adenosine triphosphate (ATP), in the heart. It permits the evaluation of ischemic changes during myocardial stress [1], and ATP turnover through the creatine-kinase reaction in the normal and failing human heart[2,3]. Recent cardiac ³¹P MRS studies suggest higher signal-to-noise atio (SNR) at 3 T compared to 1.5 T in healthy subjects[4]. For accurate metabolite quantification, the longitudinal relaxation times (T1) are needed, and measuring these at 3 T is confounded by the combined effects of: (i) RF field uniformity with surface coil use; (ii) the available RF pulse power and its decrease with depth; and (iii) RF power deposition limits. While prior studies at 1.5 T used low-angle adiabatic (BIR4) pulses [2,3], at 3 T these are limited by low bandwidth and high power requirements. We show, using a Bloch equation analysis that such effects can significantly reduce the accuracy of T1 measurements at long adiabatic pulse lengths (≥ 10 ms) for ³¹P MRS, but that the problems are ameliorated by use of adiabatic half passage 90° (AHP) pulses.

The first aim of this work was to construct a high-SNR surface coil set for 3 T cardiac ³¹P MRS that provides adequate adiabatic pulse power at the depth of the myocardium, while avoiding local power deposition problems. The second aim was to determine the T1 of PCr and γ -ATP in the human heart using a new, efficient dual repetition time (2TR) approach that minimizes T1 estimation errors at 3

T. The method is validated against the conventional saturation-recovery (SR) method.

Methods

A dual ³¹P coil with 17-cm transmitter and 8-cm receiver set was designed and built to optimize the transmit RF field at a 10 cm depth with 4 kW transmit power. Coils were interfaced to a 3 T Achieva (Philips) broadband scanner. RF power deposition was computed and measured calorimetrically in phantoms to ensure safe performance. AHP pulses (10 ms) were tailored to achieve an excitation bandwidth \ge 200 Hz for depths \le 10 cm. Six healthy volunteers (4 M/2 F, 28 \pm 6 years) were positioned prone with the heart centered over the surface coils, as verified by scout-MRI. Localized second-order shimming[5] was performed, followed by cine-MRI to determine the period of least cardiac motion. The ³¹P frequency was set between PCr and γ-ATP. Cardiac-gated one-dimensional chemical shift imaging was performed with TR = 2, 4, 12, 32 s with 24, 12, 4, and 2 averages, respectively (16 slices; 10 mm slice thickness; 2.5 kHz bandwidth).

T1 values for the human heart were determined from the signal $S(TR) = M_0(1-exp(-TR/T1))$, where M_0 is the fully-relaxed magnetization, in three ways:

1) Conventional SR with a two-parameter least-squares fit;

Open Access

Figure I

A custom coil and protocol for human cardiac 3 T 31P MRS is used to measure the T1s of PCr and -ATP in the human heart via saturation recovery, and a new, efficient dual-TR approach that reduces bandwidth and power requirements. Left, end-systolic time-frame cardiac image showing coil center and 1DCSI slice locations. Right: Cardiac ³¹P Spectrum (slice 7; TR = 12 s; 10 Hz filter; 13 min).

2) Point estimation (PE) with $M_0 = S(TR = 32 \text{ s})$ as prior knowledge;

3) The new 2 TR method (with TRs of 2/12 s and 4/12 s)

In addition M_0 was predicted (M_0^p) from the measured signal at the shorter TR and the estimated T1 from both of the 2 TR methods. Percentage errors were calculated as $(M_0^{p-S}(TR = 32 \text{ s}))/S(TR = 32 \text{ s})*100\%$.

Results

Cardiac spectra with PCr SNR \ge 30 were acquired in all 6 volunteers (Figure 1). Conventional SR gave mean T1 values of 5.9 s for PCr and 3.1 s for γ -ATP (Table in Figure 2). Dual TR gave similar T1s in scan-times of 26 minutes, just

46% of the SR scan-time of 56 minutes, albeit with slightly larger errors.

Conclusion

Bandwidth and RF power limitations at 3 T necessitate significant modifications to ³¹P MRS protocols as compared with 1.5 T. Our new dual-TR method provides fast cardiac ³¹P spectra acquisition at 3 T, predicting the fully-relaxed magnetization within a 10% error compared with actual fully-relaxed values.

	Method	SR	PE TR=2	PE TR=4	2TR TR 2/12	2TR TR 4/12
PCr	T1 [s]	5.9 ±0.6	6.0±0.7	5.7 ±0.4	5.9 ±0.8	5.3 ±0.9
	M ₀ % error	2 ±1			9 ±3	11 ±5
γ-ΑΤΡ	T1 [s]	3.1 ±0.6	3.2 ±0.5	3.3 ±0.6	2.7±0.5	2.8 ±0.9
	M ₀ % error	4 ±2			9 ±4	10 ±3

Figure 2

Measured T1 values in 6 healthy volunteers (mean \pm stdev) for PCr and γ -ATP using the 3 methods as described in the text. Percentage error for the predicted fully relaxed magnetization are reported.

References

- Weiss : N Engl J Med 1990, **23:**1593. Weiss : PNAS 2005, **102:**808. Ι.
- 2.
- 3. Smith : Circulation 2006, 114:1151.
- Tyler : *ISMRM* 2006:3089. Schär : *MRM* 2004, **51:**799. 4. 5.

