Journal of Cardiovascular Magnetic Resonance

Poster presentation

Analysis of the transient phase of balanced SSFP with non-continuous RF for cardiac imaging Glenn S Slavin

Address: GE Healthcare, Bethesda, USA from 13th Annual SCMR Scientific Sessions Phoenix, AZ, USA. 21-24 January 2010

Published: 21 January 2010 Journal of Cardiovascular Magnetic Resonance 2010, **12**(Suppl 1):P230 doi:10.1186/1532-429X-12-S1-P230

This abstract is available from: http://jcmr-online.com/content/12/S1/P230 © 2010 Slavin; licensee BioMed Central Ltd.

Introduction

The transient phase of balanced SSFP (bSSFP) is the period during which magnetization approaches steady state. The transient phase of non-ECG-gated, continuous-RF bSSFP has been characterized by a simple exponential decay with a time constant that is a flip-angle-weighted average of T_1 and T_2 [1]. Cardiac imaging applications, however, often utilize bSSFP with non-continuous RF excitation. The example considered here, Look-Locker-based T_1 mapping, begins with an ECG trigger, and is followed by magnetization preparation, a bSSFP imaging segment, and a recovery time prior to the subsequent ECG trigger. Multiple time points are acquired, separated by the R-R interval T_{RR} . The description of the continuous-RF transient phase is not applicable in this case.

Purpose

The goal of this work was to develop an analytical expression for the transient phase of bSSFP with non-continuous RF excitation. The resulting equation can be applied to Look-Locker acquisitions to provide true quantification of T_1 (and T_2), rather than an "apparent" T_1 (T_1 *).

Methods

The pulse sequence is shown in Figure 1 and is periodic, beginning with data acquisition (a segment of *N* views) and ending with a recovery time $T_{rec} = T_{RR}-N \times TR$ before the next segment. Let $M_T(n)$ be the transient magnetization prior to time point *n*, and assume the magnetization at the subsequent time point is reduced to $\lambda M_T(n)$ [1,2]. The transient response may then be written

$$\mathbf{M}_{\mathrm{T}}(n+1) = \mathcal{I}\mathbf{M}_{\mathrm{T}}(n) = \mathbf{A}\mathbf{M}_{\mathrm{T}}(n)$$

This work will show that

$\mathbf{A} = \mathbf{E}_{\mathrm{Trec}} [\mathbf{R}_{\mathrm{z}} \mathbf{E}_{\mathrm{TR}} \mathbf{R}_{\mathrm{x}}]^{N} \mathbf{B}$

where $\mathbf{R}_{x,z}$ are rotation matrices for RF excitation/alternation, \mathbf{E}_t represents relaxation during time t, and \mathbf{B} denotes steady-state catalyzation. The equation $\mathbf{AM}_{\mathrm{T}}(n) = \lambda \mathbf{M}_{\mathrm{T}}(n)$ can be solved for the real eigenvalue $\lambda_{eig}(\mathbf{T}_1, \mathbf{T}_2)$ of \mathbf{A} , which is a function of \mathbf{T}_1 , \mathbf{T}_2 , and known imaging parameters. Because it describes the exponential evolution of the transient magnetization, λ can also be written

$$l_{image} = \exp(-T_{RR} / T_1^*).$$

T₁* can be determined from fitting the time point images acquired during the transient phase. With an appropriate pulse sequence, $\lambda_{eig}(T_1, T_2) = \lambda_{image}$ can be solved for T₁ and T₂.

Results

Bloch simulation of the pulse sequence in Figure 1 was performed, and T_1^* was determined by curve fitting. T_1 , T_2 , and T_1^* were then calculated using $\lambda_{eig}(T_1, T_2)$ and showed perfect agreement.

Conclusion

Previously reported cardiac T_1 mapping techniques using bSSFP have employed various assumptions and approximations to estimate T_1 . This work presents an analytical expression for the transient phase of non-continuous-RF bSSFP. It provides the ability to directly quantify $T_1 \& T_2$ for cardiac imaging while obviating such assumptions in acquisition or post-processing.

Figure I Pulse sequence diagram, $M_T(n)$ is the transient magnetization prior to data acquisition at time point *n*.

References

- I. Scheffler : MRM 2003, 49:781.
- 2. Hargreaves : MRM 2001, 46:149.

