POSTER PRESENTATION

Open Access

Characterization of myocardial T₁ and partition coefficient as a function of time after gadolinium delivery in healthy subjects

Kelvin Chow^{1*}, Jacqueline A Flewitt², Jordin D Green³, Matthias G Friedrich², Richard B Thompson¹

From 2011 SCMR/Euro CMR Joint Scientific Sessions Nice, France. 3-6 February 2011

Background

Diffuse myocardial fibrosis is associated with myocardial infarction [1], heart failure [2] and dilated cardiomyopathy [3]. Conventional T₁-weighted late gadolinium enhancement (LGE) imaging highlights focal scaring in contrast to remote reference tissue, but it cannot detect global changes in T₁ associated with diffuse fibrosis. Quantitative T₁ imaging permits assessment of diffuse fibrosis by eliminating the use of reference tissue, but the dependence of the derived partition coefficient (lambda) on the time post-contrast injection (tpost) is not well established.

Purpose

Determine blood and myocardial T₁ values as a function of tpost and the resulting dependence of the blood-tissue partition coefficient.

Methods

Nine healthy subjects (22.0±5.5 yrs, 6 male) were imaged using a Siemens Avanto 1.5T MRI. T₁ mapping was performed on a mid-ventricular short-axis slice using a custom saturation recovery single-shot TrueFISP sequence at baseline and one-minute intervals for 15 minutes following a bolus injection of gadopentetate dimeglumine (0.1 mmol/kg). At each time point, one "no-saturation" image and nine images with varying saturation recovery times spanning the cardiac cycle were acquired during a single breath-hold.

The myocardium was divided into 18 segments and mean values were fitted to a 3 parameter saturation recovery curve to determine T₁ values for each segment at every time point. Blood T1 values were computed using a region of interest within the left ventricular cavity. Lambda was computed using {lambda=[R₁(myo $cardium_{post}$) - $R_1(myocardium_{pre})]/[R_1(blood_{post}) - R_1$ (blood_{pre})]}, where $R_1=1/T_1$.

Results

Figure 1 shows myocardial T₁, blood T₁, and lambda values averaged over all segments and subjects as a function of tpost. Average within-subject standard deviations of T_1 and lambda for t_{post} from 3-15 min were 34.1 ms and 0.046 respectively. Linear regression for lambda and tpost (3-15 min) shows an increase in lambda of 0.001 min⁻¹ (R^2 =0.75). Quantitative T_1 imaging is likely to be added to a clinical protocol following LGE imaging (tpost 10-15 min), where T₁ values increase by 5.9±1.6% and lambda increase by 1.1±2.7%.

¹University of Alberta, Edmonton, AB, Canada Full list of author information is available at the end of the article

Conclusion

Saturation recovery SSFP T_1 mapping can be performed in a single breath-hold with derived blood-tissue partition coefficient (lambda) values in good agreement with previous measurements³. In the post-LGE window of 10-15 min after contrast bolus, derived lambda values show less time dependence than myocardial T_1 .

Author details

¹University of Alberta, Edmonton, AB, Canada. ²University of Calgary, Calgary, AB, Canada. ³Siemens Healthcare, Calgary, AB, Canada.

Published: 2 February 2011

References

- 1. Flacke SJ, et al: Radiol 2001.
- 2. Iles L, et al: J Am Coll Cardiol 2008.
- 3. Jerosch-Herold M, et al: Am J Physiol Heart Circ Physiol 2008.

doi:10.1186/1532-429X-13-S1-P31

Cite this article as: Chow *et al.*: Characterization of myocardial T₁ and partition coefficient as a function of time after gadolinium delivery in healthy subjects. *Journal of Cardiovascular Magnetic Resonance* 2011 13 (Suppl 1):P31

Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

Submit your manuscript at www.biomedcentral.com/submit

