

ORAL PRESENTATION

MRI based non-invasive detection of cardiomyocyte hypertrophy and cell-volume changes

Otavio R Coelho-Filho^{2,1*}, Richard N Mitchell², Heitor Moreno¹, Raymond Kwong², Michael Jerosch-Herold³

From 15th Annual SCMR Scientific Sessions Orlando, FL, USA. 2-5 February 2012

Summary

A new approach has been developed to detect myocardial cell-hypertrophy, by measuring the intra-cellular lifetime of water in a mouse model of hypertensive heart disease, and validating the MRI marker against measurements of cell dimensions on stained heart slices.

Background

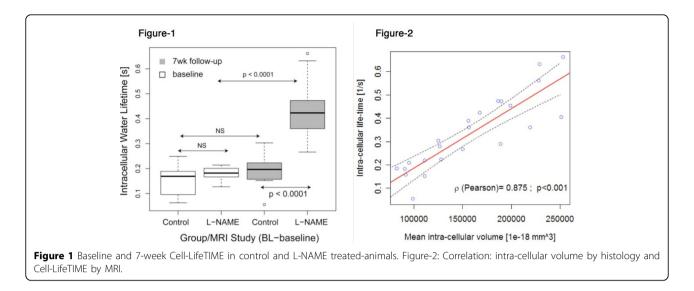
Cardiomyocyte hypertrophy occurs in cardiomyopathies and in response to pressure overload. However, only endomyocardial biopsies allow detection, with the inherent risks of invasive catheter-based procedures. Noninvasive detection of cardiomyocyte hypertrophy using imaging may detect disease at a subclinical stage and potentially guide therapy. To-date, no imaging-technique has been validated to detect hypertrophic response at the cellular level. We developed a novel measure of cell size based on the MRI determination of the intra-cellular lifetime (τ ic) of water, using pre/post-contrast T1 measurements and a 2-site H-exchange model (2SXmodel). We hypothesized that τ ic correlates positively with the histological measure of cardiomyocyte volume (Vic) in a rodent model of hypertensive heart disease.

Methods

L-NAME (3mg/ml) or placebo were administered respectively to 17 (bw=37.2 \pm 2.3g) and 13 (bw=37.5 \pm 2.5g) male-wild-type mice. Mice were imaged at base-line and 7-weeks after treatment on a 4.7T-small-animal MRI-system. T1 (>5T1 measurement/mouse) was quantified with a modified Look-Locker gradient-echo-cine technique, before and after fractionated Gadolinium-

²Medicine, Brigham and Women's Hospital, Boston, MA, USA Full list of author information is available at the end of the article DPTA administration. Minor (Dmin) and major (Dmaj) cell-diameters were measured by FITC-labeled wheat germ-agglutinin staining of cell membranes. Morphometric analysis was performed with a computer-based system. Vic was calculated from Dmin and Dmaj celldiameters using a cylindrical cell-shape approximation.

Results


L-NAME-treated-mice developed hypertrophy (weightindexed LVMass 4.1±0.4 for L-NAME vs. 2.2±0.3µg/g for placebo, p<0.001). Vic (from histology) was substantially higher in L-NAME-treated-animals (19.4*10³, IQR $917.1*10^{3}\mu mm^{3}$ vs. $10.7*10^{3}$, IQR $9.3*10^{3}\mu mm^{3}$; p<0.0001), while Dmaj/Dmin was smaller (3.4 vs. 4.2, p<1e-7), compared to controls. τ ic was significantly higher in L-NAME-treated animals (0.453±0.10 vs. 0.234 ± 0.06 , p<0.0001). tic increased significantly from baseline to 7-weeks in animals treated with L-NAME (p<0.0001) (Figure 1). tic strongly correlated with the minor cell diameter (r=0756, P<0.001), Vic (r=0.875, r<0.001) (Figure 1), and more weakly with the major cell-diameter (r=0.478, p=0.02). tic also correlated with weight-indexed LVMass (r=0.71, p<0.001). tic demonstrated an increase from baseline to 7-week (0.177 ± 0.15), which follows the increase of LVmass (39.43) $\pm 36.6 \mu g/g$) in the same interval (r=0.69, p<0.001).

Conclusions

Quantification of the intra-cellular lifetime of water (τ ic) by MRI provides a robust non-invasive estimation of cell volume changes, validated here against Vic and direct morphological measurements. τ ic correlated more strongly with Dmin than Dmaj, reflecting the fact that the dependence τ ic on Dmax is weak for cylindrical shapes with Dmax/Dmin~4. Dmin was the shape

© 2012 Coelho-Filho et al; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

parameter that changes most with hypertension and cell-hypertrophy. This novel MRI-based measure of cell volume may become useful to assess early adverse cellular remodeling in several cardiac conditions.

Funding

Supported by the American Heart Association (AHA 11POST5550053) and the National Institutes of Health/ NHLBI (1R01HL090634-01A1).

Author details

¹Internal Medicine, State University of Campinas, Campinas, Brazil. ²Medicine, Brigham and Women's Hospital, Boston, MA, USA. ³Radiology, Brigham and Women's Hospital, Boston, MA, USA.

Published: 1 February 2012

doi:10.1186/1532-429X-14-S1-O10

Cite this article as: Coelho-Filho *et al.*: **MRI based non-invasive detection** of cardiomyocyte hypertrophy and cell-volume changes. *Journal of Cardiovascular Magnetic Resonance* 2012 **14**(Suppl 1):O10.

Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

) BioMed Central

Submit your manuscript at www.biomedcentral.com/submit