ORAL PRESENTATION Open Access # Quantitative free-breathing 3T T₂-mapping of the heart designed for longitudinal studies Ruud B Van Heeswijk^{1,2*}, Hélène Feliciano^{1,2}, Gabriele Bonanno^{1,2}, Simone Coppo^{1,2}, Nathalie Lauriers³, Didier Locca³, Juerg Schwitter³, Matthias Stuber^{1,2} From 15th Annual SCMR Scientific Sessions Orlando, FL, USA. 2-5 February 2012 #### **Background** Recently, T_2 -weighted MRI for the characterization of edema after myocardial infarction has attracted considerable attention (Friedrich, NatRevCardiol2010). Furthermore, the recently proposed combination of bSSFP imaging and T_2 Prep for T_2 -mapping at 1.5T has enabled a rapid quantitative cardiac T_2 estimation (Huang et al., MRM2007). However, the accuracy of this method may still be limited due to the complex T_2/T_1 signal weighting. Especially for longitudinal studies designed for monitoring and/or guiding therapy, accurate and reproducible T_2 measurements will be critical. A novel quantitative 3T T_2 -mapping protocol was therefore developed and tested in both healthy volunteers and patients. #### **Methods** An adiabatic T_2 prep with 3 incremental TE values, affine coregistration, a navigator and 2D radial gradient echo imaging were combined for free-breathing T2-mapping at 3T with a spatial resolution of 1.25mm. Bloch equation simulations of this sequence were used to optimize scan parameters and to determine an empirical equation that compensates for T₁ relaxation and which returns the "true" T₂. The T₂-mapping sequence and empirical equation were then validated in a series of 15 phantoms in which the true T2 was determined with a 9-TE spin-echo sequence. Next, the myocardial short axis T2 of 8 healthy volunteers was mapped in two different scan sessions while a reference phantom (T₂=43.1 ±0.7ms) was placed next to the thorax. The average myocardial T₂ for both sessions was computed with and without correction with the "true" reference phantom T_2 . Finally, this validated protocol was used in 5 patients in the subacute phase after revascularization of acute ST-elevation myocardial infarctions and compared to T_2 -weighted TSE imaging. #### Results As a result of both the simulations and phantom scans, optimized sequence parameters included: TE_{T2prep}=60/ 30/0ms, $T_{RR}=3$ heartbeats, TR/TE=5.3/2.4ms. The empirical equation to determine T₂ was S=S0[exp $(-TE_{T2prep}/T_2)+0.06$], where S and S0 are the measured and steady-state signal (Fig. 1a). Scans of the phantoms with known T2 confirmed a 12±2%(p<0.001) improvement in T₂ estimation with the empirical equation as compared to the standard T2 decay measurements (Fig. 1b). The myocardial T_2 in the volunteers was homogeneous (42±5ms over all volunteers) and on average showed a 5±2% difference between the two scan sessions. When compensated with the T₂ from the reference phantom, this difference decreased to 2±1% (p=0.02). In all patients, T₂maps could successfully be obtained and a clear demarcation of zones with elevated T₂ values was consistent with the findings on T₂weighted MRI and X-ray coronary angiography as shown in the example in Fig. 2. #### Conclusions The methodology presented in this study enables robust and accurate cardiac T_2 -mapping at 3T, while the addition of a reference phantom improves reproducibility. Therefore, it may be well-suited for longitudinal studies in patients with ischemic heart disease. #### **Funding** N/A. ¹Radiology, University Hospital Lausanne (CHUV), Lausanne, Switzerland Full list of author information is available at the end of the article **Figure 1** Single pixel T_2 -mapping in a simulation and phantom scan. A) Simulated magnetization (black dots) for myocardium with input T_2 =45ms at the T_2 prep times (60, 30 and 0ms) and fitted curves with the standard (dashed line) and new, empirical (whole line) equation. The new equation leads to more accurate T_2 computations. B) Similar results are obtained in a pixel in a T_2 map of a phantom where the T_2 was determined to be 45ms with a 9-TE spin echo scan. **Figure 2** Short-axis T_2 map together with conventional T_2 -weighted turbo spin-echo and X-ray coronary angiogram in a patient with a myocardial infarct. A) A clearly demarcated zone with elevated T_2 can be seen in the region of the black arrow, which might indicate myocardial edema. The non-infarcted tissue has a homogenous T_2 , while the reference phantom adjacent to the thorax appears homogeneous with T_2 values similar to those in healthy tissue. B) The conventional T_2 -weighted TSE image confirms the elevated T_2 in the region of the infarct (arrow). C) Consistent with these findings, the x-ray coronary angiogram shows a severe stenosis in an obtuse marginal artery (arrow). #### Author details ¹Radiology, University Hospital Lausanne (CHUV), Lausanne, Switzerland. ²Center for BioMedical Imaging (CIBM), Lausanne, Switzerland. ³Center for Cardiac Magnetic Resonance and Cardiology Service, University Hospital Lausanne (CHUV), Lausanne, Switzerland. Published: 1 February 2012 #### doi:10.1186/1532-429X-14-S1-O51 Cite this article as: Van Heeswijk *et al.*: Quantitative free-breathing 3T T₂-mapping of the heart designed for longitudinal studies. *Journal of Cardiovascular Magnetic Resonance* 2012 **14**(Suppl 1):O51. ## Submit your next manuscript to BioMed Central and take full advantage of: - Convenient online submission - Thorough peer review - No space constraints or color figure charges - Immediate publication on acceptance - Inclusion in PubMed, CAS, Scopus and Google Scholar - Research which is freely available for redistribution Submit your manuscript at www.biomedcentral.com/submit