Journal of Cardiovascular Magnetic Resonance

POSTER PRESENTATION

Diffuse tensor cardiac MRI evaluation of fiber architecture of athlete hypertrophic heart in vivo

Ming-Ting Wu^{1*}, Wen-Yih I Tseng^{2,3}, Mao-Yuan M Su³, Van J Weeden⁴, Timothy G Reese⁴

From 15th Annual SCMR Scientific Sessions Orlando, FL, USA. 2-5 February 2012

Background

The fiber architecture adaption in physiological hypertrophy of the althete heart is still delusive. We aimed to use diffusion tensor cardiac MR (DT-CMR) to evaluate the tissue property and fiber architecture of elite athlete heart.

Methods

Eight elite athletes of Marathon runner (endurancetraining type), 8 of weight-lifter (strength-training type) and 8 ordinary style (medical interns) were enrolled. Each subject received a CMR study on a 1.5 T scanner including 1. cine SSPF of a stack of LV short axis for LV mass and function; 2 DT-CMR, ECG-gated stimulated echo diffuse EPI on three levels of LV. Diffuse tensor composed of 6 directions and b value = 300 mm2/ sec. 3. phase-contrast flow measurement at ascending aorta for stroke volume. The data were compared between groups and correlated between the parameters.

Results

The myocardium showed no difference of mean diffusivity (MD) and fractional anisotropy between the groups. Weight lifter showed increase of stroke volume / BSA and LV mass / BSA as compared to runner and ordinary groups. The fiber architecture showed an increased proportion of right-handed helical fibers (mainly in the subendocardial zone) in runner and lifter equally, as compared to ordinary group. Putting all 24 subjects together, there was a linear regression between the proportion of right-handed helical fiber and LV mass (R square = 0.38, p = 0.002).

¹Department of Radiology, National Yang Ming University, Taipei, Taiwan Full list of author information is available at the end of the article

Conclusions

DT-CMR revealed the physiological hypertrophy of athlete heart was mainly due to right-handed helical fibers. This underscores the important role of subendocardial fiber on the LV function.

Funding

N/A

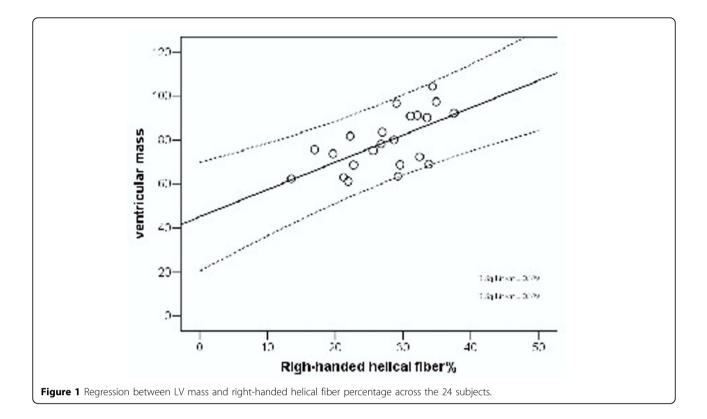
Author details

¹Department of Radiology, National Yang Ming University, Taipei, Taiwan. ²Center for Optoelectronic Biomedicine, National Taiwan University, Taipei, Taiwan. ³Department of Medical Imaging, National Taiwan University Hospital, Taipei, Taiwan. ⁴National Yang Ming University, Taipei, Taiwan.

Published: 1 February 2012

doi:10.1186/1532-429X-14-S1-P170 Cite this article as: Wu *et al.*: Diffuse tensor cardiac MRI evaluation of fiber architecture of athlete hypertrophic heart in vivo. *Journal of Cardiovascular Magnetic Resonance* 2012 14(Suppl 1):P170.

Submit your next manuscript to BioMed Central and take full advantage of:


- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

) BioMed Central

Submit your manuscript at www.biomedcentral.com/submit

© 2012 Wu et al; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Wu et al. Journal of Cardiovascular Magnetic Resonance 2012, **14**(Suppl 1):P170 http://www.jcmr-online.com/content/14/S1/P170

