

POSTER PRESENTATION

Through-slice dephasing for eddy current artifact reduction in bSSFP

Ozan Sayin^{1*}, John A Derbyshire², Elliot McVeigh¹, Daniel Herzka¹

From 15th Annual SCMR Scientific Sessions Orlando, FL, USA. 2-5 February 2012

Summary

Eddy current effects can severely degrade image quality when using balanced steady-state free precession imaging with rapidly varying phase encode ordering schemes, which have common use in cardiac cine MRI. In this work, we explore and characterize a previouslyproposed technique, through-slice dephasing, as the sole technique for eddy current artifact removal. We demonstrate that artifacts vary for different slice orientations yet they can be removed using the herein investigated technique.

Background

Gradient pulses induce eddy currents in conductive components of scanners creating time-varying magnetic fields. For bSSFP, eddy currents create significant field fluctuations, strong enough to disturb the steady-state and introduce severe artifacts [1]. For linear phase encoding schemes, k-space lines are acquired consecutively, yielding a smooth variation of the induced fields over time. However, phase encode ordering schemes such as random, centric or golden-ratio [2,3] (Fig 1), employ large, irregular steps between successive k-space lines, causing varying field modulations and image artifacts. We explore through-slice dephasing [1,4] as a solution with minimal SNR penalties.

Methods

Gd-doped water bottles were imaged on a 1.5T system (Avanto, Siemens Medical Systems, Erlangen, Germany) using the standard cardiac phased-array and spine coils. Max gradient amplitudes and slew rates were 33 mT/m and 130 mT/m/ms respectively. 2D bSSFP imaging was implemented using a hardware optimized gradient

¹Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA

Full list of author information is available at the end of the article

Results

Figure 2 shows banding-like artifacts in all the Cart-GR images (especially the sagittal and coronal images). Artifacts are removed with $\pm 45^{\circ}$ through slice-dephasing. RMSE artifact reduction could be greatly improved with dephasing angles less than $\pm 60^{\circ}$ with SNR losses less than 10%.

Conclusions

Through-slice dephasing is highly effective in suppressing eddy current induced artifacts in bSSFP imaging. Considering these artifacts appear substantial in Cart-GR and random PE scans, they are most likely caused by the zero order (spatially independent) EC field yielding an off-resonance shift over time. We propose that dephasing angles smaller than $\pm 60^{\circ}$ /TR provide sufficient suppression of EC artifacts with little SNR loss. More work is needed to determine effects of TSD on moving spins.

© 2012 Sayin et al; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Figure 2 a) linear PE, b) Cart-GR PE, c) Cart-GR PE with through-slice (45° dephasing) transverse slice orientation. d), e) and f) are same as a), b) and c) respectively, with a sagittal slice. g), h) and i) are same as a), b) and c) respectively, with a coronal slice. Slice dephasing substantially improves image quality for Cart-GR PE. Blue arrows indicate PE direction. On the right, normalized RMSE (top) and SNR relative to the linear PE reference scan (bottom) values are plotted for Cart-GR scans. RMSE values are normalized to the fully balanced-SSFP Cart-GR scan for that particular orientation.

Funding

This work was funded in part by Siemens Medical Solutions USA, Inc. and the American Heart Association, 11SDG5280025.

Author details

¹Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA. ²Translational Medicine Branch, DIR, National Heart, Lung and Blood Institute, NIH, Bethesda, MD, USA.

Published: 1 February 2012

References

- 1. Bieri O, et al: MRM. 2005, 54:129.
- 2. Winkelmann S, et al: IEEE TMI. 2007, 26:68.
- 3. Siegler P, et al: ISMRM. 2010.
- 4. Hargreaves BA: ISMRM. 2008.
- 5. Derbyshire JA, et al: MRM. 2010, 64:1814.

doi:10.1186/1532-429X-14-S1-P271

Cite this article as: Sayin *et al.*: Through-slice dephasing for eddy current artifact reduction in bSSFP. *Journal of Cardiovascular Magnetic Resonance* 2012 14(Suppl 1):P271.

Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

BioMed Central

Submit your manuscript at www.biomedcentral.com/submit