

Open Access

POSTER PRESENTATION

Effect of uphill running on myocardium T₂ in *mdx* mice

Sean C Forbes^{1*}, Ravneet S Vohra¹, Fan Ye¹, Krista Vandenborne¹, Glenn A Walter²

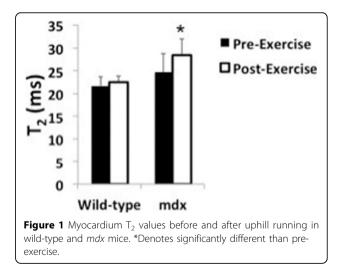
From 15th Annual SCMR Scientific Sessions Orlando, FL, USA. 2-5 February 2012

Background

Cardiac dysfunction is a major cause of death in Duchenne muscular dystrophy. In mdx mice, the lack of functional dystrophin localized to the cell membrane leads to increased susceptibility to muscle damage and enhanced muscle degeneration. In this study we examined the effect of an uphill running protocol (Michele et al. Circ Res. 105(10):984-93, 2009) on myocardium transverse relaxation time (T₂) in young adult *mdx* mice (16 weeks).

Methods

A 4.7T Oxford Magnet with an Agilent/Varian operating system was used to acquire gated T₂-weighted single spin-echo images of the left ventricle in the short axis view (TR 750 ms; TE 14-16 ms and TE 30-32 ms; field of view, 25X25 mm2; slice thickness, 1.0 mm; acquisition matrix size, 256 X 128; averages, 8). Images were acquired in C57Bl10 (n=5, male) and mdx (n=5, male) mice using a custom built quadrature volume coil (3.3 cm inner diameter). Mice performed uphill treadmill running at a speed of 6-13m/min with a 10 degree incline for up to one hour. MR data were acquired prior to exercise and after 16-24 hrs of exercise. Short axis slices from the mid-papillary region were selected to calculate mean T₂. Mean T₂ of the myocardium was calculated using the average signal intensity at each TE by manually tracing the myocardium.


Results

Each control mouse completed one hour of uphill running (800 meters), while there was considerable variability in the amount of time and distance run by the mdx mice $(33\pm21(SD) \text{ min}; 329\pm227 \text{ meters})$, with only one *mdx* mouse completing one hour. In wild-type mice,

¹Department of Physical Therapy, University of Florida, Gainesville, FL, USA Full list of author information is available at the end of the article there was no effect (p>0.05) of this uphill running protocol on myocardium T_2 after exercise (Fig. 1). In *mdx* mice, an increase in myocardium T_2 was observed in each mouse (range: 5 to 32%; Fig. 1). There did not appear to be a direct relationship between running time and T_2 increase (r=.14, p>0.05).

Conclusions

The increase in myocardium T_2 following exercise in *mdx* mice is consistent with dystrophic muscle having an increased susceptibility to muscle damage. Therefore, this *in vivo* exercise protocol monitored using cardiac MRI may be valuable in future studies to test the efficacy of potential therapeutic treatments in dystrophic murine models. Furthermore, this study supports the notion that T_2 may be valuable for evaluating myocardium involvement in muscular dystrophy.

© 2012 Forbes et al; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Funding

Supported by American Heart Association Post-doctoral Fellowship and Wellstone Muscular Dystrophy Center (1U54RO52646-01A1).

Author details

¹Department of Physical Therapy, University of Florida, Gainesville, FL, USA. ²Physiology and Functional Genomics, University of Florida, Gainesville, FL, USA.

Published: 1 February 2012

doi:10.1186/1532-429X-14-S1-P59

Cite this article as: Forbes *et al*:: Effect of uphill running on myocardium T_2 in *mdx* mice. *Journal of Cardiovascular Magnetic Resonance* 2012 14 (Suppl 1):P59.

Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

BioMed Central

Submit your manuscript at www.biomedcentral.com/submit