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Abstract

Background: Ectopic accumulation of fat accompanies visceral obesity with detrimental effects. Lipid oversupply to
cardiomyocytes leads to cardiac steatosis, and in animal studies lipotoxicity has been associated with impaired left
ventricular (LV) function. In humans, studies have yielded inconclusive results. The aim of the study was to evaluate
the role of epicardial, pericardial and myocardial fat depots on LV structure and function in male subjects with
metabolic syndrome (MetS).

Methods: A study population of 37 men with MetS and 38 men without MetS underwent cardiovascular magnetic
resonance and proton magnetic spectroscopy at 1.5 T to assess LV function, epicardial and pericardial fat area and
myocardial triglyceride (TG) content.

Results: All three fat deposits were greater in the MetS than in the control group (p <0.001). LV diastolic
dysfunction was associated with MetS as measured by absolute (471 mL/s vs. 667 mL/s, p = 0.002) and normalized
(3.37 s-1 vs. 3.75 s-1, p = 0.02) LV early diastolic peak filling rate and the ratio of early diastole (68% vs. 78%, p = 0.001).
The amount of epicardial and pericardial fat correlated inversely with LV diastolic function. However, myocardial TG
content was not independently associated with LV diastolic dysfunction.

Conclusions: In MetS, accumulation of epicardial and pericardial fat is linked to the severity of structural and functional
alterations of the heart. The role of increased intramyocardial TG in MetS is more complex and merits further study.

Keywords: Cardiovascular magnetic resonance, Proton magnetic resonance spectroscopy, Metabolic syndrome,
Obesity, Diastolic dysfunction, Myocardial triglyceride content, Epicardial fat, Pericardial fat, Cardiac steatosis
Background
Cardiovascular diseases are a common co-morbidity of
the worldwide obesity epidemic. Abdominal obesity in
particular associates with metabolic syndrome (MetS)
and type 2 diabetes mellitus (T2DM). Excess calorie intake
and sedentary lifestyle combined with unfavorable geno-
type and several environmental factors result in lipid
overflow, due to a failure of subcutaneous adipose tissue
to expand and store the excess of circulating free fatty
acids (FFA). Consequently, ectopic fat accumulates around
the viscera and into sites regularly containing only minor
amount of adipose tissue, such as the liver, pancreas,
skeletal muscle, and heart [1,2]. Ectopic fat deposits have
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reproduction in any medium, provided the or
been subdivided into those with local and those with
systemic effects [2,3]. According to this, perivascular,
myocardial, and epi/pericardial fat have mainly local
unfavorable effects, whereas visceral adipose tissue, or fat
in the liver or skeletal muscles have systemic effects due
to the fundamental role of these organs in glucose, insulin,
and lipid metabolism. In this context, both the amount
and location of ectopic adipose tissue are highly important
with respect to the cardiovascular morbidity and mortality.
Heart-related fat can be subdivided into myocardial,

epicardial, and pericardial fat [4]. In recent years, 1H-mag-
netic resonance spectroscopy (1H-MRS) has proved to be a
reliable method to noninvasively quantify cardiomyocytic
triglyceride (TG) content in vivo [5]. Increased cardiac
adiposity has been associated with obesity, impaired
glucose tolerance, and T2DM [6-8]. Animal studies have
provided evidence on a close relationship between cardiac
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lipotoxicity and impaired left ventricular (LV) function [9].
In T2DM patients, myocardial TG content associates with
LV diastolic dysfunction [10,11]. The mechanism behind
this phenomenon has remained unresolved, and also
controversial reports have been published [8]. To our
knowledge, only limited data exist on the relationship of
cardiac steatosis and diastolic LV function in non-diabetic
male subjects with MetS.
Subclinical LV dysfunction has been reported to associate

with obesity and MetS by means of other imaging modal-
ities [12,13]. However, cardiovascular magnetic resonance
(CMR) studies allowing precise LV filling pattern analysis
are limited [14,15]. The present study focuses on the
LV diastolic function with specific interest on the role
of all three cardiac fat compartments in male subjects
with MetS.

Methods
Study population
Male subjects were recruited by advertisements in local
newspapers. The study recruitment is summarized and
the rates of drop out at each stage are shown in Figure 1.
The final study population consisted of 75 Finnish men of
Caucasian ethnicity. Based on cardiometabolic risk factors,
subjects were divided into two groups: those with MetS
and those without MetS. To qualify for the MetS group,
subjects must have waist circumference ≥ 94 cm in addition
to two or more abnormal findings according to the harmo-
nized definition of MetS [16]. The other subjects were
Figure 1 Details of study design. Blue boxes indicate the number of stu
rates at each stage.
classified as subjects without MetS. Exclusion criteria
from the study included the following: other known acute
or chronic disease based on medical history, physical
examination, and standard laboratory tests (blood counts,
creatinine, aspartate aminotransferase, alanine amino-
transferase, thyroid-stimulating hormone), T2DM (based
on a 2-h oral glucose tolerance test), significant alcohol
consumption (more than 20 grams per day), and treatment
with other lipid lowering therapy than statins. As the
hormonal status and use of contraceptives modify lipid
metabolism in women, only male subjects were recruited.
Smoking and elevated liver enzymes were allowed. Five
study subjects were on regular medication for hyperten-
sion, three for dyslipidemia (statins), and one for both
hypertension and dyslipidemia. In participants with MetS,
coronary artery disease (CAD) was additionally excluded
by adenosine stress perfusion CMR followed by late gado-
linium enhancement images. The rationale for this was to
exclude the potential interfering effects of CAD-associated
myocardial scar tissue and/or altered cardiac function or
lipid metabolism caused by myocardial ischemia. The study
was approved by the Ethics Committee of the Department
of Medicine, Hospital District of Helsinki and Uusimaa,
and each subject provided written informed consent to
participate.

Demographic variables and biochemical investigations
Body mass index (BMI) was calculated by dividing weight
in kilograms by the square of the height in meters (kg/m2).
dy subjects at each stage and boxes outlined in red indicate drop-out
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Waist circumference was measured at a level midway
between the lower rib lateral margin and the iliac crest in
the horizontal position. Blood pressure was recorded as an
average of five measurements obtained in the sitting
position after a 5 min rest using a BPM-200 monitor
(Quick Medical, WA, USA). The subjects were classified
as present, past, or non-smokers.
Blood samples were collected after an overnight fast.

Total serum cholesterol, TGs, and high-density lipoprotein
cholesterol were measured by Konelab analyzer 60i with
Konelab TM kits (both from Thermo Fisher Scientific,
Finland). The concentration of low-density lipoprotein
cholesterol was derived from the Friedewald formula [17].
Fasting and postload glucose were assessed by the hexoki-
nase method (Gluco-quant, Roche Diagnostics, Basel,
Switzerland) using either a Hitachi 917 or Modular analyzer
(both from Hitachi Ltd, Tokyo, Japan). Serum insulin
concentration was determined by double-antibody radio-
immunoassay (Pharmacia RIA kit, Pharmacia, Uppsala,
Sweden). The insulin-resistance homeostasis model assess-
ment (HOMA) index was calculated by using the formula:
(fasting plasma glucose x fasting plasma insulin)/22.5 [18].

CMR protocol
Cardiac imaging was performed with a 1.5 Tesla whole-
body MR scanner (Magnetom Avanto; Siemens, Erlangen,
Germany) with subject lying at rest in supine position.
A multi-channel body coil was used for reception. Cine
series were acquired in 4-chamber, 2-chamber and LV short
axis orientations during breath hold using a retrospectively
electrocardiographically gated steady state free precession
gradient echo sequence. A stack of short axis cine series
(typically 12 slices) was obtained covering the LV from base
to apex with typical imaging parameters of repetition time
50 ms, echo time 1.18 ms, flip angle 69 degrees, matrix
186 × 220, field of view 355 × 420 mm, slice thickness
8 mm, gap 2 mm, and temporal resolution 32–53 ms.

Image analysis
Dedicated post-processing software (Argus; Siemens Med-
ical Solutions, Erlangen, Germany) was used to perform a
volumetric analysis of the LV. The analysis was performed
by two radiologists with experience of CMR. LV ejection
fraction, mass, end-diastolic volume (EDV), end-systolic
volume (ESV), and stroke volume (SV) were measured,
and both volume parameters and mass were reported as
indexed to the subject’s body surface area (BSA). An LV
mass-to-volume ratio was calculated by dividing the LV
mass by EDV. An LV global function index (LVGFI) was
derived from the following formula: LVGFI = [LVSV/
((LVEDV + LVESV)/2 + LV mass/1.05)]x100 [19]. An LV
early diastolic peak filling rate (PFR) was obtained from
the LV volume versus time curve. In diastolic dysfunction,
PFR is decreased due to impaired LV relaxation and/or
increased myocardial stiffness causing reduced suction
effect. LV EDV normalized values of PFR (PFR/LVEDV)
were also reported. The LV filling curve was visually
inspected to identify the plateau between the early diastole
caused by ventricular relaxation and the late diastole, the
result of atrial contraction. The resulting diastolic plateau
volume was divided by the EDV and the resulting percent-
ile was reported as the ratio of early diastole. The physio-
logical basis for measuring this index is that in the first
phase of diastolic dysfunction, the proportion of LV filling
in the early phase of diastole is reduced, and the contribu-
tion of left atrial contraction to LV filling is increased [20].
Diastolic dysfunction can be seen in LV volume kinetics as
a depression of the diastolic plateau and as a shift from left
to right in early diastole due to suppressed PFR (Figure 2).

Quantification of myocardial TG content
For measuring the myocardial TG content, cardiac 1H-
MRS was performed in a 1.5 T MR imager (Magnetom
Avanto; Siemens AG, Erlangen, Germany) using a standard
flex-coil for signal reception. The spectroscopic volume
of interest was placed within the interventricular septum
using the end-systolic cardiac cine images in three planes.
The localizer images and spectroscopic data acquisition
were double-triggered to end-exhalation and end-systole,
using Prospective Acquisition Correction navigator echoes
(PACE, WIP-sequence, program version B17) to control for
respiratory movement and electrocardiograph-derived R
wave to control for cardiac pulsation. Spectral localization
and data collection were performed with the PRESS se-
quence with 35 ms echo time, while repetition time
(TR > 3000 ms) did not fall below the respiratory cycle
length. Navigator echoes were collected from the lung-
diaphragm interface and the end-systole triggering was
set at about 80% of the resting heart rate of the subject.
The spectra were collected with and without water sup-
pression, using 32 and 4 acquisitions, respectively, and an-
alyzed with jMRUI v3.0 software [21] using the AMARES
algorithm [22] to determine water (4.7 ppm), methylene
(1.3 ppm) and methyl (0.9 ppm) resonance areas. The
myocardial TG content was expressed as a ratio of fat to
water (%). Correction for methylene T2 relaxation was not
possible due to lack of reliable data for cardiac application.

Quantification of epicardial and pericardial fat
The 4-chamber oriented cine images were applied for
measuring the epicardial and pericardial adipose tissue
area as described previously [23]. All phases of the cine
images were inspected and the measurements were
performed in the single end-diastolic image using a
standard radiologic workstation (Impax 5.5 software,
Agfa Healthcare, Mortsel, Belgium). The areas of high
intensity fat layers between the myocardium and the
visceral pericardium (epicardial fat) and outside the



Figure 2 Evaluation of diastolic function in left ventricular (LV) volume versus time curve. A) LV filling pattern in a normal subject. Early
peak filling rate (PFR) is derived from the steepest gradient in the volume curve in the early filling phase. The horizontal white line demonstrates
the diastolic diastasis phase (plateau) separating the early and late diastole. B) LV filling pattern in a metabolic syndrome patient with LV diastolic
dysfunction demonstrating a depression of diastolic plateau and early PFR (arrow).
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parietal pericardium (pericardial fat) were measured
(Figure 3). Intra-thoracic adipose tissue outside the
pericardium in the particular slice was included to the
value of pericardial fat. A stack of short-axis oriented
end-diastolic T1-weighted turbo spin echo images was
also obtained (with typical imaging parameters of: repeti-
tion time 1050 ms, echo time 29 ms, flip angle 180
Figure 3 Determination of epicardial and pericardial fat.
Contours of the epicardial (shown in blue) and pericardial (shown in
red) fat were outlined in a 4-chamber oriented end-diastolic image.
degrees, matrix 256 × 256, slice thickness 6 mm, and
gap 1.5 mm), and they were additionally used to aid in
epi- and pericardial fat separation as well as in water
and fat separation, once needed. Intra- and inter-observer
variability of epicardial and pericardial fat quantification
was evaluated by two radiologists on separate occasions
by the measurement of 20 (10 MetS and 10 without MetS)
randomly selected study subjects.

Statistical analyses
All statistical analyses were performed with IBM SPSS
Statistics for Windows, version 19.0 (IBM Corp., Armonk,
NY, USA). Normality of continuous variables was analyzed
by the Kolmogorov-Smirnov test. Logarithmic transform-
ation of variables was performed, if necessary. Data are
presented as frequencies or percentages for categorical
variables, as means ± SD for normally distributed continu-
ous variables, and as medians (range) for skewed variables.
Between-group differences were assessed by the Mann–
Whitney U test, unpaired t-test, and the chi-square test,
as appropriate. Analysis of covariance was applied to
compare the means or medians of LV dimensions and
function with adjustment for age. Levene’s test was used to
assess homogeneity of variances. To detect determinants
of myocardial TG content and epicardial and pericardial
fat, univariate age-adjusted analyses were performed. The
results of the correlation analyses are presented both with
and without Bonferroni correction. Stepwise multivariable
regression analyses were used to evaluate the impact of
cardiac fat depots on LV diastolic parameters as dependent
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variables. In univariate analyses, epicardial fat showed a
strong relationship with pericardial fat. Therefore, these
variables were not forced into the same multivariate
model. Differences were considered statistically signifi-
cant at p < 0.05. Intra- and inter-observer variability was
assessed via intra-class correlation coefficients (ICC).
Absolute agreement ICCs were calculated via a two-way
mixed model for single measures.

Results
Subject characteristics
Clinical and biochemical characteristics and measurements
of cardiac fat deposits are summarized in Table 1. Partici-
pants with MetS (n = 37) were, on average, 7 years older
than subjects without MetS (n = 38) and included more
current smokers. Subjects with MetS had greater waist
circumference and BMI, and higher HOMA index com-
pared with the subjects without MetS. Comparison of the
serum lipid profile between the groups showed higher
total cholesterol, low-density lipoprotein cholesterol and
TGs, and lower high-density lipoprotein cholesterol in
the MetS group. In MetS, myocardial TG content was
on average twice higher than in subjects without MetS.
The areas of epicardial and pericardial fat were significantly
larger in the MetS group in comparison with the control
group.

Analysis of left ventricular function
An overview of the CMR data adjusted for age is shown
in Table 2. In the MetS subjects, BSA- indexed values of
Table 1 Clinical and biochemical characteristics and cardiac fa

MetS present

Age (years) 47 ±

Body mass index (kg/m2) 30.9 (24.2

Waist circumference (cm) 107.0 (94.0

Height (cm) 180 ±

Current smokers (N, %) 13 (35

Systolic blood pressure (mmHg) 132 ±

Diastolic blood pressure (mmHg) 88 ±

Total cholesterol (mmol/L) 5.25 ± 0

Low-density lipoprotein cholesterol (mmol/L) 3.25 ± 0

High-density lipoprotein cholesterol (mmol/L) 1.02 ± 0

Triglycerides (mmol/L) 2.20 (0.65

fP-glucose (mmol/L) 5.8 (4.6-

fS-insulin (mU/L) 9.3 (3.3-3

HOMA-IR index 2.6 (0.8-

Myocardial triglyceride content (%) 0.90 (0.31

Epicardial fat (mm2) 838 (385-

Pericardial fat (mm2) 1905 (615

Data are expressed as means (± SD), medians (range), or frequencies (%). HOMA-IR,
LV ESV, EDV, and SV were smaller than in the subjects
without MetS. LV volumes were within the normal range
in both study groups, and differences remained significant
after adjustment for the amount of exercise (data not
shown). The LV ejection fraction was normal in all partici-
pants and comparable between the study groups. The LV
mass indexed to BSA did not differ between the study
groups. The LV mass-to-volume ratio was greater and the
LVGFI lower in the MetS group compared to the control
group, indicating concentric rather than eccentric remod-
eling. LV early diastolic PFR, PFR/EDV, and ratio of early
diastole differed significantly between the study groups
associating diastolic dysfunction with MetS.

Correlation analysis of cardiac steatosis and LV
diastolic function
Age-adjusted univariate correlation analysis (Table 3)
revealed that the amount of epicardial and pericardial fat
was inversely correlated with the parameters of diastolic
function. Myocardial TG content correlated with the ratio
of early diastole, but not with PFR. The LV mass-to-
volume ratio, end-diastolic, end-systolic, and stroke
volumes indexed to BSA correlated with myocardial TG
content, and with pericardial and epicardial fat. The scatter
plots demonstrate that correlations of PFR with epicardial
and pericardial fat are mainly due to subjects with MetS
(Figure 4).
Finally, we used a multivariate correlation analysis

to further evaluate the interrelationship between the
individual cardiac fat depots and LV diastolic dysfunction
t compartments in the study population

(n = 37) MetS absent (n = 38) p

6 40 ± 8 <0.001

-42.5) 23.4 (17.6-29.8) <0.001

-135.0) 87.0 (71.0-93.5) <0.001

6 180 ± 6 0.665

) 4 (10) 0.014

14 115 ± 10 <0.001

9 74 ± 6 <0.001

.74 4.38 ± 0.80 <0.001

.71 2.52 ± 0.67 <0.001

.26 1.50 ± 0.40 <0.001

-6.26) 0.72 (0.35-1.57) <0.001

6.9) 5.0 (4.4-6.0) <0.001

6.9) 2.9 (0.9-7.7) <0.001

8.0) 0.6 (0.2-2.0) <0.001

-2.33) 0.43 (0.14-1.39) <0.001

1753) 518 (251-1129) <0.001

-6131) 562 (66-1582) <0.001

the homeostasis model assessment insulin resistance.



Table 2 Left ventricular dimensions and function in the study population

MetS present (n = 37) MetS absent (n = 38) p

Systolic function and dimensions

LV ejection fraction (%) 61 ± 6 62 ± 4 0.745

LV end-systolic volume/Body surface area (mL/ m2) 25 ± 7 32 ± 5 <0.001

LV stroke volume/Body surface area (mL/m2) 40 ± 8 52 ± 7 <0.001

LV mass/Body surface area (g/m2) 58 ± 9 62 ± 7 0.190

LV mass/End-diastolic volume (g/mL) 0.88 (0.66-1.32) 0.73 (0.61-0.90) <0.001

LV global functional index (%) 41 (24-51) 44 (35-54) <0.001

Diastolic function and dimensions

LV end-diastolic volume/Body surface area (mL/m2) 65 ± 13 84 ± 11 <0.001

Peak filling rate (mL/s) 471 (238-909) 667 (329-1315) 0.002

Peak filling rate/LV end-diastolic volume (s-1) 3.37 (1.89-5.46) 3.75 (2.63-7.23) 0.023

LV early diastole (%) 68 ± 9 78 ± 8 0.001

Data are expressed as means (± SD) or medians (range). All parameters are adjusted for age. LV, left ventricular.
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(Table 4). We found that age and epicardial and peri-
cardial fat were all independent determinants of PFR and
PFR/EDV. Age and pericardial fat were also independent
predictors of the ratio of early diastole. Interestingly, once
the effect of age, waist circumference, body mass index,
blood pressure parameters, and epicardial and pericardial
fat were taken into account, myocardial TG content was
not independently related to any parameter of diastolic
dysfunction.
Table 3 Univariate correlation analysis between cardiac fat co
adjusted for age

Myocard

Fat depots

Myocardial TG content

Epicardial fat

Pericardial fat

Systolic function and dimensions

LV ejection fraction (%)

LV end-systolic volume/Body surface area (mL/ m2)

LV stroke volume/Body surface area (mL/m2)

LV mass/Body surface area (g/m2)

LV mass/LV end-diastolic volume (g/mL)

LV global functional index (%)

Diastolic function and dimensions

LV end-diastolic volume/Body surface area (ml/m2)

Peak Filling Rate (mL/s)

Peak Filling Rate/LV end-diastolic volume (s-1)

LV early diastole (%)
*p<0.05, †p<0.01, ‡p<0.001, without Bonferroni correction.
ap<0.005 with Bonferroni correction.
LV, left ventricular.
Reproducibility of fat quantification
Intra-observer reproducibility for epicardial fat assessment
was high with a ICC of 0.97 and 0.99 for pericardial fat
respectively. Inter-observer reproducibility showed ICC
of 0.91 for epicardial and 0.96 for pericardial fat.
In order to test the repeatability of the 1H-MRS with

WIP-sequence, we repeated the sequence in five subjects
with varying degrees of myocardial TG content. Shim
values and measurement parameters were kept unchanged.
mpartments and left ventricular dimensions and function

ial TG content Epicardial fat Pericardial fat

- 0.273* 0.297*

0.273* - 0.691‡a

0.297* 0.691‡a -

0.019 −0.052 0.019

−0.257* −0.312† −0.337†a

−0.275* −0.413‡a −0.370†a

−0.024 −0.235* −0.225

0.313† 0.279* 0.255*

−0.219 −0.246* −0.178

−0.303† −0.419‡a −0.403‡a

−0.115 −0.307† −0.329†a

−0.102 −0.281* 0.297*

−0.424† −0.438† −0.462‡
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Figure 4 Correlations of left ventricular mass-to-volume ratio (LV mass/EDV) and left ventricular early peak filling rate (PFR) with
different cardiac fat compartments. A-C) Relationship of LV mass/EDV and all cardiac fat compartments showing positive associations. D) Notice
non-significant correlation of PFR and myocardial TG content, and E-F) significant inverse correlation between PFR and epicardial and pericardial
fat. Open circles indicate subjects with MetS and closed circles subjects without MetS.
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The measurements correlated (R2 = 0.9975) with a coeffi-
cient of variation of 9.0%.

Discussion
To the best of our knowledge, this is the first study utilizing
CMR technology to combine the measurements of all
three cardiac fat compartments with detailed analyses
of LV function in a group of non-diabetic men free of
cardiovascular disease. The main findings of the study
are as follows: 1) MetS is associated with LV diastolic
dysfunction; 2) MetS-linked changes in the structure
of LV are rather concentric than eccentric by nature; 3)
ectopic accumulation of epicardial and pericardial fat
correlates with the degree of LV diastolic dysfunction, and
4) myocardial TG content is not independently associated
with LV diastolic dysfunction.
In our study, MetS was strongly associated with LV

diastolic dysfunction, as demonstrated by lowered LV
early diastolic PFR and ratio of early diastole. In earlier
studies, reduced PFR in insulin-resistant obese women
and in T2DM patients have been reported [10,15]. Rider
et al. reported similar findings in a female-dominant
gender-mixed cohort consisting of markedly obese sub-
jects (BMI 38.7) with unknown status of MetS [14]. Thus,
the present study adds to previous knowledge on the
association between MetS and LV diastolic dysfunction in
non-diabetic male subjects with moderately increased BMI.
Our results give further support to the role of cardiometa-
bolic effects of visceral obesity in the development of
obesity-associated LV diastolic dysfunction.
The LV mass was similar in the two study groups, but

LV concentric remodeling was present only in subjects
with MetS. Concentric LV remodeling has been associated
with abdominal obesity and is considered as an early sign
of obesity-related cardiac remodeling before the develop-
ment of LV hypertrophy [24]. Furthermore, LVGFI has
recently been introduced as a novel method to integrate
LV structure with global function [19]. An LVGFI value



Table 4 Results of stepwise multivariable regression analysis

Independent variables Model 1 Model 2

β p β p

Dependent variable: Peak filling rate (mL/s) (log)

Age −0.406 <0.001 −0.379 <0.001

Waist circumference (log) −0.157 0.219 −0.164 0.214

Body mass index (log) −0.126 0.303 −0.138 0.257

Systolic blood pressure −0.074 0.521 −0.075 0.525

Diastolic blood pressure −0.088 0.440 −0.089 0.442

Myocardial triglyceride content (log) −0.024 0.830 0.002 0.989

Epicardial fat (log) −0.318 0.002 - -

Pericardial fat (log) - - −0.316 0.003

Adjusted R2 0.317 <0.001 0.310 <0.001

Dependent variable: Peak filling rate/LV end-diastolic volume (log)

Age −0.276 0.018 −0.256 0.027

Waist circumference (log) −0.140 0.316 −0.161 0.266

Body mass index (log) −0.099 0.461 −0.122 0.360

Systolic blood pressure −0.003 0.981 −0.009 0.944

Diastolic blood pressure −0.035 0.781 −0.042 0.740

Myocardial triglyceride content (log) −0.019 0.878 −0.002 0.989

Epicardial fat (log) −0.303 0.007 - -

Pericardial fat (log) - - −0.287 0.013

Adjusted R2 0.192 <0.001 0.178 <0.001

Dependent variable: LV early diastole (%)

Age −0.445 <0.001 −0.422 <0.001

Waist circumference (log) −0.375 <0.001 −0.204 0.082

Body mass index (log) 0.235 0.296 −0.107 0.328

Systolic blood pressure 0.009 0.934 −0.015 0.887

Diastolic blood pressure −0.131 0.243 −0.154 0.132

Myocardial triglyceride content (log) −0.087 0.442 −0.105 0.318

Epicardial fat (log) 0.015 0.897 - -

Pericardial fat (log) - - −0.405 <0.001

Adjusted R2 0.432 <0.001 0.451 <0.001

Epicardial fat is an independent variable in Model 1 and pericardial fat in Model 2. β = regression coefficient.
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of <37% was associated with a significant risk of cardiovas-
cular events. In our study population, LVGFI was signifi-
cantly lower in the MetS patients than in the subjects
without MetS, also supporting the tenet that the nature of
cardiac remodeling is rather concentric than eccentric in
MetS.
MetS is strongly associated with an increased amount of

visceral adipose tissue, which in turn is the best predictor
of pericardial and epicardial fat according to our previous
study [23]. An increased amount of epicardial fat is related
to burden of atherosclerotic plaques, CAD (coronary
artery disease) and myocardial ischemia [25,26]. This
CMR study confirms that epicardial fat is also strongly
associated with LV diastolic dysfunction. This is in line
with earlier findings based on echocardiography and com-
puted tomography [27]. Epicardial fat is a metabolically
active fat depot in a direct contact with the coronary arter-
ies and myocardium. Animal studies have demonstrated
that it shows higher lipogenic and lipolytic activities than
other fat deposits [28]. However, little is known about the
physiology of lipid storage in human epicardial fat [29]. It
may have a constitutive role in cardiac lipotoxicity serving
to store FFAs or as a protective buffer of TG accumulation
in the myocardium. Furthermore, in obese patients it se-
cretes proinflammatory cytokines with a role in coronary
atherogenesis [30]. Finally, a mechanical role for the epicar-
dial fat may be possible to taper the myocardial relaxation
or to increase the myocardial stiffness.
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Most studies have focused on epicardial adipose tissue,
and a lesser role has been left to pericardial or intra-
thoracic fat. In our study, pericardial fat correlated with
diastolic dysfunction even on a larger scale of parameters
than epicardial fat. Similarly, as a marker of ectopic fat
accumulation, pericardial fat has been reported to associ-
ate with insulin resistance and 10-year CAD risk more
strongly than epicardial fat [31].
Interestingly, unlike other cardiac fat deposits, myocardial

TG content was not independently associated with LV
diastolic dysfunction in multivariate analysis where other
cardiac fat deposits are taken into account. In line with
our results, two studies in insulin-resistant women, both
without an assessment of epi/pericardial fat, reported the
link between the myocardial TG content and diastolic
dysfunction as of borderline significance [15] or negative
[32]. Our findings challenge the concept of myocardial
lipid accumulation as an unambiguous marker of diastolic
dysfunction, as suggested by earlier studies in T2DM
patients where myocardial TG content was found to be
associated with impaired LV diastolic function [10,11].
However, in subjects with MetS, myocardial TG content

was increased up to two-fold compared with the subjects
without MetS. Notably, the range of myocardial TG
content (0.14-2.33%) was relatively narrow. Rather than a
stable fat deposit, myocardial TG is a highly dynamic lipid
pool, where up to three or four-fold increase has been re-
ported following 48–72 h fasting in lean subjects [5,33].
On the other hand, short-term lipid excess did not
increase TG content in cardiomyocytes [9]. In diabetic
subjects, 16 weeks calorie restriction decreased myocardial
TG levels and improved diastolic function [33]. Hence,
myocardial TG content may be adaptive to both short and
long-term dietary interventions, and it may thus serve
as a relatively rapidly changing reservoir of energy, in
an analogous fashion to intramyocytic TG of skeletal
muscle [34]. Normal heart utilizes FFAs and glucose as
main energy sources with a ratio of 3:1 [35]. In the setting
of obesity, the energy balance is shifted even more from
glycolysis toward the increased β-oxidation of fatty acids
[36]. In MetS, the increased intramyocardial TG may
actually reflect the enhanced demand of lipids due to
the preference of using fat more over glucose as the
primary fuel of the heart.
In conclusion, our study suggests that although myo-

cardial TG is elevated in subjects with MetS, it cannot
be used as a surrogate parameter for cardiac function.
Further studies are needed to examine the dynamics of
intramyocardial lipids, and elucidate the role of their excess
in the myocardium.

Limitations
To exclude the effects of hormonal variability, our study
population was limited to men. Recently, the association
of myocardial TG content and obesity has been studied
also in female subjects [15,32]. In our study, subjects
with MetS were older than the controls producing a po-
tential source of bias for the evaluation of cardiac steatosis
and diastolic dysfunction. However, our results remained
significant after adjusting for age. There was a clear differ-
ence in biomarkers between subjects with and without
MetS, however, the differences other than MetS criteria
might be significant confounders in terms of differences in
LV structure and function. Although the measurements of
diastolic function consisted of multiple parameters, they
were based solely on LV short axis cine images. Other
methods such as trans-mitral velocity-encoded flow
analysis might have served as an internal reference.
However, pitfalls of this technique include a pseudonormal
E/A-pattern related to diastolic dysfunction, and common
averaging errors of velocity measurements due to data
gathering time of several minutes and intra-cycle variation.
The measurement of the epicardial and pericardial fat may
be prone to bias as it did not cover the entire volume of
the particular fat tissue. However, in our preliminary data,
this method correlates well with conventional but very
time-consuming Simpson method [23]. Finally, the cross-
sectional nature of the study design limits inferences of
causality.
Conclusions
Metabolic syndrome associates with both structural and
functional changes in the heart leading to LV diastolic
dysfunction. The amount of epicardial and pericardial fat
correlates with the severity of these changes. Myocardial
TG increases as well, but it does not seem to act as a mere
fat deposit in the same way as epicardial and pericardial
fat. Instead, our study favors a more complex role for myo-
cardial TG in obesity associated cardiovascular diseases.
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