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Background
Compressed Sensing (CS) is a theory with potential to
reconstruct sparse images from a small number of ran-
dom acquisitions. Particularly in MRI, CS aims to recon-
struct the image from incomplete K-space data with
minimum penalty on the image quality. The image is
recovered from the sub-sampled K-space data, using
image sparsity in a known sparse transform domain.
Cardiac MRI has a sparse structure in both temporal
and spatial domains; making CS a promising method for
such application.

Methods
Experiments were performed on a data set acquired by
Cagdas Bilen et al.[1]. Fully sampled data were acquired
using a 128×128 matrix (FOV = 320 × 320 mm) and 23
temporal frames covering the cardiac cycle. In this
study, we reconstructed eight (one in every three)
frames through CS using Gradient Projection for Sparse
Reconstruction (GPSR) algorithm. The remaining 15
frames were reconstructed through a combination of CS
and temporal information (TI). Sampling rate for the CS
and CS-TI frames was set to 0.5 and 0.3, respectively.
Block Discrete Cosine Transform (BDCT), Block Walsh-
Hadamard Transform (BWHT) and Gaussian Transform
were used to create measurement matrix in CS. Discrete
Wavelet Transform (DWT) was used as sparse basis.
The fidelity term in cost function is modified as: g=0.9||

Fu m-y||2+0.1||TE-m||2, where Fu represents the
under-sampled Fourier operator, y represents the K-
space under-sampled data, and TE (Temporal Estima-
tion) represents the obtained frames from TI. In this
study, we use interpolation (I), forward motion estima-
tion (FME) and forward-backward motion estimation
(F-B ME), respectively on previous and next CS frames
to obtain TI.

Results
Figure 1 illustrates one frame from the original set along
with the corresponding CS and CS-TI frames recon-
structed with proposed methods for TI generation.
Table 1 shows numerical results including SNR, PSNR,
Structural SIMilarity (SSIM) and computational time for
each proposed method.

Conclusions
The proposed method increased under-sampling rate
and expedited reconstruction time in CS theory. The
results were quantified using SNR, PSNR and SSIM for
the quality of the reconstruction and the computational
time, concluding that BWHT outperforms other meth-
ods in both quality measures and computational time
with 15% and 10%, respectively. In all aforementioned a
derivative of the proposed method, the processing time
was at least 4 times accelerated compared to the routine
CS algorithm.
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Figure 1 From left to right, First row) original image, CS frame with BWHT, BDCT and Gaussian measurement matrices. Second row) CS-TI using
I method frame with BWHT, BDCT and Gaussian measurement matrices. Third row) CS-TI using FME method frame with BWHT, BDCT and
Gaussian measurement matrices. Fourth row) CS-TI using (F-B) ME method frame with BWHT, BDCT and Gaussian measurement matrices.

Table 1 Results Of Proposed Methods Show That BWHT Outperform Other Methods.

Measurement Matrix methods TI - Methods SNR PSNR SSIM Time(s)

CS 26.750626 82.80 0.981008 11.3048

I 28.076336 83.82 0.983096 2.5165

BWHT CS-TI FME 27.796233 83.88 0.974924 2.1939

F-B ME 27.946202 83.93 0.979615 2.3913
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Table 1 Results Of Proposed Methods Show That BWHT Outperform Other Methods. (Continued)

CS 21.545575 75.25 0.827131 12.1182

I 22.505806 76.34 0.780809 2.9337

Gaussian CS-TI FME 20.527749 72.95 0.791594 2.9910

F-B ME 21.586516 76.32 0.805057 3.0172

CS 26.985696 82.07 0.974128 12.6598

I 27.656441 83.16 0.958932 2.8911

BDCT CS-TI FME 27.720514 83. 87 0.977975 2.3867

F-B ME 29.923755 83.86 0.962291 2.1828
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