

ORAL PRESENTATION

Relationship of diffuse myocardial fibrosis to body composition: the Multi-Ethnic Study of Atheroscelerosis (MESA)

Songtao Liu^{1,2*}, Chia-Ying Liu³, Jing Han⁴, Evrim B Turkbey¹, Yuan Chang Liu³, Diane Bild⁵, Andrew E Arai⁵, Robyn McClelland⁶, W Gregory Hundley⁷, Antoinette S Gomes⁸, Russell Tracy⁹, Richard Kronmal⁶, Joao A Lima³, David A Bluemke^{1,2}

From 16th Annual SCMR Scientific Sessions San Francisco, CA, USA. 31 January - 3 February 2013

Background

Patients who are overweight and obese have a better clinical prognosis than their lean counterparts, termed the "obesity paradox". The relationship of body composition to myocardial tissue composition however is largely unknown. The purpose of this study was to evaluate the relationship of body composition to diffuse myocardial fibrosis (DMF) as assessed by cardiac magnetic resonance (CMR) T1 mapping.

Methods

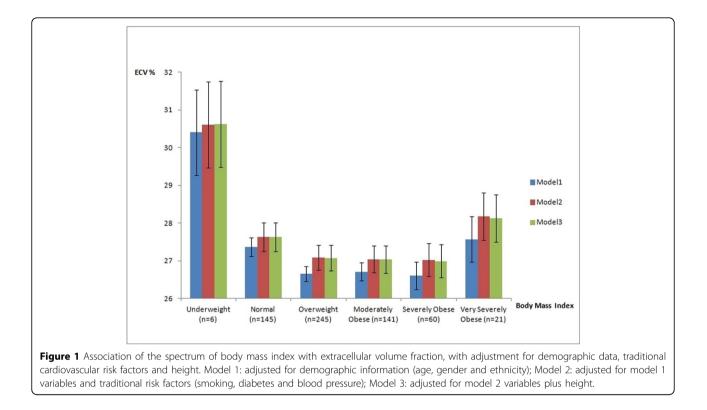
A total of 608 participants (mean age 67.9 ± 8.8 years, 47.2% men) in the Multi-Ethnic Study of Atherosclerosis (MESA) who were free of clinically apparent cardiovascular disease at baseline enrollment underwent CMR to assess LV size and function as well as measures of body composition (body mass index, BMI), and cardiovascular risk factors. Gadolinium contrast (Magnevist, 0.15 mmol/kg) was administrated and single slice T1 mapping was performed at the mid-ventricular level before and after (12 and 25 minutes) using a Modified Look Locker Inversion Recovery (MOLLI) sequence. Study subjects with LGE scar were excluded. Extracellular volume fraction (ECV) was derived by adjusting partition coefficient with hematocrit. The subjects were divided into six groups according to WHO BMI classification. Linear regression analysis was used to evaluate the association of BMI categories with ECV. Sequential models were developed. Model 1 was adjusted for demographic information (age, gender and ethnicity); Model 2 included model 1 variables plus traditional risk factors (smoking, diabetes and blood pressure); Model 3 included model 2 variables plus height.

Results

The average BMI and ECV were 28.9 ± 5.4 , and 0.27 ± 0.03 , respectively. ECV was significantly associated with BMI categories in all three models (ECV vs. BMI, p=0.006, model 3) (Figure 1). Age, gender, smoking, diabetes and hypertension were also significantly associated with ECV. ECV was not associated with ethnicity and height. The underweight group (BMI <18.5) had a significantly greater ECV compared with BMI between 18.5 and 40 (p=0.003). The very severely obese group (BMI >40) had a trend towards higher ECV compared with BMI between 18.5 and 40 (p=0.09) (Table 1).

Conclusions

In a multiethnic population, extremes of body composition had higher level of diffuse myocardial fibrosis detected by CMR, especially for underweight study subjects.


Funding

National Institutes of Health Intramural Program.

¹Radiology and Imaging Sciences, NIH Clinical Center, Bethesda, MD, USA Full list of author information is available at the end of the article

© 2013 Liu et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Table 1 Associations of Body Mass Index categories with extracellular volume fraction

	Body Mass Index		
	<18.5 (Underweight) N=6 (1%)	18.5-40 N=581(95.5%)	>40 (Very severely obese) N=21(3.5%)
Model 1*	3.53 (1.32 to 5.77); 0.002	Reference	0.75 (-0.45 to 1.96); 0.22
Model 2+	3.35 (1.17 to 5.54); 0.003	Reference	1.04(-0.17 to 2.24); 0.09
Model 3#	3.37 (1.18 to 5.55); 0.003	Reference	1.02 (-0.19 to 2.23); 0.09

Values are β (95% confidence interval), p value. *Adjusted for age, sex, and race. +Adjusted for Model 1 variables plus traditional risk factors (hypertension, smoking and diabetes). #Adjusted for Model 2 variables plus height.

Author details

¹Radiology and Imaging Sciences, NIH Clinical Center, Bethesda, MD, USA. ²Molecular Biomedical Imaging Laboratory, National Institute of Biomedical Imaging and Bioengineering, Bethesda, MD, USA. ³Johns Hopkins Hospital, Baltimore, MD, USA. ⁴U.S. Food and Drug Administration, Rockville, MD, USA. ⁵National Heart Lung and Blood Institute, Bethesda, MD, USA. ⁶University of Washington, Seattle, WA, USA. ⁷Wake Forest University, Winston-Salem, NC, USA. ⁸University of California Los Angeles, Los Angeles, CA, USA. ⁹University of Vermont, Burlington, VT, USA.

Published: 30 January 2013

doi:10.1186/1532-429X-15-S1-O109 Cite this article as: Liu *et al*.: Relationship of diffuse myocardial fibrosis to body composition: the Multi-Ethnic Study of Atheroscelerosis (MESA). *Journal of Cardiovascular Magnetic Resonance* 2013 **15**(Suppl 1):O109.

Submit your next manuscript to BioMed Central and take full advantage of: • Convenient online submission

- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

) Bio Med Central

Submit your manuscript at www.biomedcentral.com/submit