

ORAL PRESENTATION

Quantitative molecular imaging of angiogenesistargeted fluorinated nanoparticles: new approaches for B₁-mapping compensation for ¹⁹F-MRI

Matthew J Goette^{1*}, Anne H Schmieder¹, Todd A Williams¹, John S Allen¹, Jochen Keupp², Gregory M Lanza¹, Samuel A Wickline¹, Shelton D Caruthers¹

From 16th Annual SCMR Scientific Sessions San Francisco, CA, USA. 31 January - 3 February 2013

Background

Quantitative MR molecular imaging allows for the detection of targeted contrast agents to diagnose disease states and monitor response to therapy, such as anti-angiogenic therapy in atherosclerosis and cancer with $\alpha_{\nu}\beta_3$ -integrin targeted perfluorocarbon (PFC) nanoparticles. Recently, ¹⁹F MR using a ¹⁹F/¹H dual-tuned RF coil has been utilized to directly image and quantify the fluorinated core of these PFC nanoparticle (NP) emulsions. However, low concentrations of these fluorine agents in the body, in conjunction with varying RF coil sensitivity profiles (B₁-field inhomogeneities) raise obstacles to accurate quantification. This study presents a strategy to more accurately quantify the sparse ¹⁹F signal from PFC NP emulsions with a ¹H image-based Actual Flip-angle Imaging (AFI) B₁-mapping correction to the ¹⁹F and ¹H images.

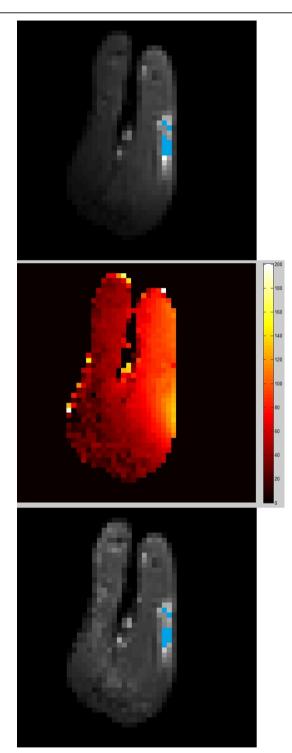
Methods

New Zealand White Rabbits (2 kg) were implanted with a VX2 adenocarcinoma tumor (2-3 cm) in the hind leg. Angiogenesis imaging was performed 2 weeks post implantation, under ketamine/xylazine anesthesia. An $\alpha_{\nu}\beta_3$ -integrin targeted perfluoro-octyl bromide (PFOB) nanoparticle emulsion was prepared, and injected intravenously 3 hours before imaging. MR data were acquired on a 3T clinical whole-body scanner (Achieva, Philips Healthcare) with a dual 19 F/ 1 H spectrometer system and a dual-tuned transmit/receive single loop surface RF coil (7×12 cm). A simultaneous 19 F/ 1 H gradient echo (GRE)

imaging sequence was used with: ¹⁹F offset frequency on the center of the PFOB CF₂ peak, 15 4-mm slices, 140 mm FOV, 48³ matrix, $\alpha = 60^{\circ}$, TE/TR = 2.2/8.5 ms, 21 min scan time. The B₁ field was mapped using an AFI sequence with matching geometry. Using the flip angle map and a model of the GRE signal, a spatially-dependent calibration mask was calculated in MATLAB (Math-Works) and used to compensate the ¹H and ¹⁹F signal intensities for the GRE sequence.

Results

PFC NP targeted the tumor neovasculature, and provided localized ¹⁹F signal as expected. Figure 1 displays the uncorrected (top) and corrected (bottom) ¹H images with the ¹⁹F signal superimposed, using the AFI (middle) B₁-mapping correction technique. After correction, the ¹H signal intensity profile as a function of distance from the surface coil (located at right) is improved. After the same correction to the ¹⁹F signal, the measured concentration of nanoparticles when compared to a standard was 10.2 ± 1.0 mM_{19F}, versus 9.0 ± 2.2 mM_{19F} before correction.


Conclusions

An image-based B₁-mapping correction acquired with ¹H can be used to correct signal intensities for ¹⁹F and ¹H images of angiogenesis in an *in vivo* rabbit model. The correction results in a more homogeneous ¹H image of the anatomy and facilitates accurate measurement of bound $\alpha_{\nu}\beta_{3}$ -integrin targeted nanoparticles with ¹⁹F imaging.

¹School of Medicine, Washington University in St. Louis, St. Louis, MO, USA Full list of author information is available at the end of the article

© 2013 Goette et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Funding

AHA 11PRE7530046; NIH R01 HL073646.

Author details

¹School of Medicine, Washington University in St. Louis, St. Louis, MO, USA.
²Philips Research Europe, Hamburg, Germany.

Published: 30 January 2013

doi:10.1186/1532-429X-15-S1-O83

Cite this article as: Goette *et al.*: **Quantitative molecular imaging of** angiogenesis-targeted fluorinated nanoparticles: new approaches for B₁-mapping compensation for ¹⁹F-MRI. *Journal of Cardiovascular Magnetic Resonance* 2013 **15**(Suppl 1):083.

Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

BioMed Central

Submit your manuscript at www.biomedcentral.com/submit