

Open Access

POSTER PRESENTATION

Acute reperfusion intramyocardial hemorrhage leads to regional chronic iron deposition in the heart

Avinash Kali^{1,2*}, Ivan Cokic¹, Andreas Kumar³, Sotirios Tsaftaris⁴, Richard L Tang¹, Matthias G Friedrich^{5,6}, Rohan Dharmakumar¹

From 16th Annual SCMR Scientific Sessions San Francisco, CA, USA. 31 January - 3 February 2013

Background

Intramyocardial hemorrhage commonly occurs in large reperfused myocardial infarctions. However, its long-term fate remains unexplored. We hypothesized that acute reperfusion intramyocardial hemorrhage leads to chronic iron deposition.

Methods

Fifteen patients (mean age = 58 ± 8 years; 3 women), who underwent successful angioplasty for first STEMI, were recruited following informed consent. Cardiovascular Magnetic Resonance (CMR) imaging (1.5T) was performed on day 3 and month 6 post-angioplasty. 2D T2* maps (6 TEs = 2.6-13.7 ms; Δ TE=2.2ms) and Late Gadolinium Enhancement (LGE) images of the entire left ventricle (LV) were acquired. Threshold-based image analysis was performed to identify remote, hemorrhagic (Hemo+) and non-hemorrhagic (Hemo-) myocardium.

Fourteen canines, subjected to ischemia-reperfusion (I-R) injury (3 hours of LAD occlusion followed by reperfusion), underwent CMR (1.5T) on days 3 and 56 post-I-R injury. Three sham-operated animals (Shams) were also studied using CMR at similar time points. 2D T2* maps (6 TEs = 3.4-18.4 ms; Δ TE=3.0ms) and LGE images of the entire LV were acquired. Threshold-based image analysis was performed to identify remote, Hemo+ and Hemo- myocardium. Subsequently, animals were euthanized (day 56), hearts were excised and imaged ex-vivo. Sections of Hemo+, Hemo-, remote and Sham myocardium were isolated and histology was performed. The concentration of iron

 $^1\mathrm{Biomedical}$ Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA

Full list of author information is available at the end of the article

([Fe]) within each type of tissue was measured using mass spectrometry.

Results

Six months post-angioplasty, mean T2* of the scar tissue in patients with Hemo+ infarctions (n=11 as determined by T2* losses within the infarct on day 3 CMR; Figure 1) was 40% lower than that of remote myocardium, suggesting chronic iron deposition (p<0.001). In contrast, mean T2* of Hemo- infarctions (n=4) was not significantly different from that of remote myocardium at both 3 days and 6 months post-angioplasty (p=0.51).

In canines, in-vivo mean T2* of Hemo+ myocardium was 40% lower than those of Sham, remote and Hemomyocardium (p<0.001) at both 3 days and 56 days post-I-R injury (Figure 2B). Similarly, mean ex-vivo T2* of Hemo+ myocardium was 40% lower than those of Sham, remote

Figure 1 Patient Studies - Representative CMR images (A; acquired from a 42-year old patient following successful angioplasty for first STEMI) with significant T2* loss (arrows) at the site of acute and chronic myocardial infarction (identified by LGE imaging, arrows) are shown. Mean T2* of Hemo+ (B) was 40% lower than that of Hemo-and remote myocardium (p<0.001) on both acute and chronic CMR studies.

© 2013 Kali et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Figure 2 Animal Studies -Representative CMR images (A; T2* in the top row and LGE in the bottom row) acquired from an animal with hemorrhagic myocardial infarction in acute and chronic phases along the long- and short-axis (along the dashed red line in the long-axis images), together with corresponding ex-vivo images are shown (A). In-vivo T2* images (both acute and chronic phases) clearly demonstrate the evidence of signal loss in the LAD territory. Both mean in-vivo T2* (B) and ex-vivo T2* (C) of Hemo+ sections were 40% lower than those of Shams, Remote, and Hemo- in both acute and chronic phases (p<0.001). Mass spectrometric analysis (D) showed that iron content of Hemo+ tissue was 10-fold higher than that of other tissues (p<0.001). Linear regression analysis (E) between log(ex-vivo T2*) and -log([Fe]) showed a strong correlation (R2 = 0.74; p<0.001).

and Hemo- myocardium (p<0.001; Figure 2C). Perl's stain confirmed localized chronic iron deposition only within Hemo+ infarctions. Mean [Fe] of Hemo+ infarctions was nearly 10-fold higher than those of Sham, remote and Hemo- myocardium (p<0.001; Figure 2D). A strong linear relationship was observed between log(ex-vivo T2*) and $-\log[[Fe])$ (R²=0.7; p<0.001; Figure 2E).

Conclusions

Acute reperfusion intramyocardial hemorrhage leads to regional chronic iron deposition within the infarct zones. T2* CMR can accurately characterize localized chronic iron deposition following reperfusion-induced myocardial hemorrhage. The clinical significance of this finding remains to be investigated.

Funding

This work was supported in part by grants from American Heart Association (SDG 0735099N) and National Heart, Lung, And Blood Institute (HL091989).

Author details

¹Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA. ²Department of Biomedical Engineering, University of California, Los Angeles, CA, USA. ³Quebec Heart & Lung Institute, Laval University, Quebec City, QC, Canada. ⁴Department of Computer Science and Applications, IMT Institutions, Lucca, Italy. ⁵Montréal Heart Institute, Université de Montréal, Montréal, QC, Canada. ⁶Stephenson CMR Center, University of Calgary, Calgary, AB, Canada.

Published: 30 January 2013

doi:10.1186/1532-429X-15-S1-P174 Cite this article as: Kali *et al.*: Acute reperfusion intramyocardial hemorrhage leads to regional chronic iron deposition in the heart. *Journal of Cardiovascular Magnetic Resonance* 2013 15(Suppl 1):P174.

Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

) BioMed Central

Submit your manuscript at www.biomedcentral.com/submit