

POSTER PRESENTATION

Open Access

R2* for myocardial iron quantification at 3T CMR using an advanced shimming algorithm

Gabriel C Camargo^{1*}, Tamara Rothstein¹, Flavia P Jjunqueira¹, Daniel C Quintella¹, Ralph Strecker², Andreas Greiser³, Joao A Lima⁴, Patricia B Rizzi¹, Maria Eduarda Derenne¹, Ronaldo SL Lima¹, Ilan Gottlieb¹

From 16th Annual SCMR Scientific Sessions San Francisco, CA, USA. 31 January - 3 February 2013

Background

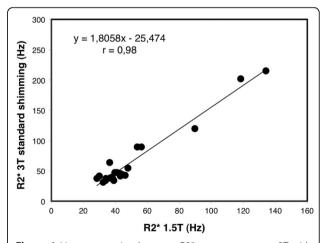
Quantification of myocardial iron overload is critical for the management of patients with hemochromatosis. T2* relaxation time or its inverse R2*, are currently the non-invasive gold standard at 1.5T, as they strongly correlate with myocardial iron concentration, and are obtained using a fast single breath-hold ECG-gated multi-echo GRE sequence. However, due to high sensitivity to B0 inhomogeneities, R2* (1/T2*) quantification at 3T is still challenging. We aimed to evaluate if a recently developed advanced shimming protocol based on a GRE double-echo fieldmap acquisition, can improve the performance of R2* quantification at 3T.

Methods

A total of 15 normal volunteers and 7 hemochromatosis patients (with a myocardial T2* measure <20 ms in the last 2 years, five of these on iron chelating therapy) were scanned at 1.5T and 3T (MAGNETOM Symphony and Verio respectively, Siemens, Erlangen, Germany) using breath-hold multi-echo GRE sequences, under standard entire FOV shimming (Protocol1). The same sequence was repeated at 3T after a double-echo GRE fieldmap guided a novel 3D shimming with the shim volume limited to the heart (Protocol2). All ROIs were placed at mid-interventricular septum, carefully avoiding the blood pool and all analyses were blinded.

Results

All patients were at sinus rhythm and their MRI scans had diagnostic image quality. Mean myocardial R2* values were not statistically different between protocols 1 and 2 (65.2±51.3 Hz and 68.6±56.8 Hz respectively,


p=0.83). R2* in both 3T protocols showed strong linear correlation with R2* at 1.5T, with r=0.98 in both cases (Figure 1). R2* measurements with and without advanced shimming had excellent correlation with each other (r=0.99), with small bias (mean difference of 3.5 \pm 8.6 ms) as shown in Figure 2.

Conclusions

In sustained shimmed 3T systems, R2* quantification can be reliably performed using standard shimming protocol, in strong correlation with 1.5T reference values. Our results do not show improvement in performance of R2* measurement using a new volume targeted shimming algorithm developed for 3T.

Funding

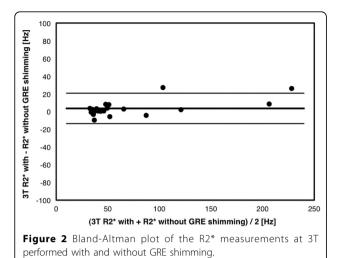

Internal.

Figure 1 Linear regression between R2* measurements at 3T with standard shimming and R2* at 1.5T.

¹CDPI - Clínica de Diagnóstico por Imagem, Rio de Janeiro, Brazil Full list of author information is available at the end of the article

Author details

¹CDPI - Clínica de Diagnóstico por Imagem, Rio de Janeiro, Brazil. ²Siemens LTDA, São Paulo, Brazil. ³Siemens Healthcare, Erlangen, Germany. ⁴Cardiology, Johns Hopkins University, Baltimore, MD, USA.

Published: 30 January 2013

doi:10.1186/1532-429X-15-S1-P38

Cite this article as: Camargo et al.: R2* for myocardial iron quantification at 3T CMR using an advanced shimming algorithm.

Journal of Cardiovascular Magnetic Resonance 2013 15(Suppl 1):P38.

Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

Submit your manuscript at www.biomedcentral.com/submit

