

MODERATED POSTER PRESENTATION

Improved precision in SASHA T₁ mapping with a variable flip angle readout

Kelvin Chow^{1*}, Bruce S Spottiswoode², Joseph J Pagano¹, Richard B Thompson¹

From 17th Annual SCMR Scientific Sessions New Orleans, LA, USA. 16-19 January 2014

Background

The SAturation-recovery single-SHot Acquisition (SASHA) T_1 mapping sequence has excellent accuracy independent of T_1 , T_2 , heart rate, and flip angle [1], which are known dependencies of the more commonly used MOdified Look-Locker Inversion-recovery (MOLLI) sequence. However, SASHA has a greater T_1 variability (poorer precision) compared to MOLLI. A two-parameter fit, with assumed ideal saturation, has been shown to improve precision compared to the standard three-parameter fit used for SASHA, but at the expense of introducing systematic errors [2]. We propose that a variable flip angle (VFA) readout will reduce these systematic errors and thereby allow the improved precision of a two-parameter fit.

Methods

A VFA scheme was empirically designed with Bloch equation simulations to minimize two-parameter fit errors with SASHA data, consisting of scaling the prescribed flip angle for the first 45 pulses by $\sin(x)$ for $\pi/90 < x < \pi/2$.

The first 5 data acquisitions in the pulse train were discarded, matching the number of dummy pulses with linear catalyzation in the standard SASHA sequence. SASHA, SASHA-VFA, and MOLLI T₁ imaging was performed on 4 healthy volunteers (Siemens Aera 1.5T) on a mid-ventricular short-axis slice with typical bSSFP imaging readout parameters: 1.01/2.44 ms TE/TR, 8 mm slice thickness, 112×192 matrix size, 270×360 mm² field of view, rate 2 GRAPPA with 24 in-place ACS reference lines, 78% phase resolution, and 7/8 partial Fourier for a total imaging duration of ~175 ms. SASHA datasets were acquired with 9 images having equally spaced TIs from 165-780 ms following BIR-4 saturation, plus a non-saturated image. Standard SASHA was acquired with 5 (dummy) linear catalyzation pulses and SASHA-VFA was acquired with sinusoidal scaling described above, both with a target flip angle of 70°. MOLLI data was acquired with a 5-(3)-3 configuration, 120 ms TI start, 80 ms TI increment, 35° flip angle, and a tan/tanh adiabatic inversion pulse [3]. T_1 pixel map were generated and the mean and standard deviation calculated for an ROI enclosing the entire LV myocardium.

	-	, j	
	Mean Myocardial T ₁ (ms)	Standard Deviation of Myocardial T ₁ (ms)	Coefficient of Variation of Myocardial T_1 (%)
SASHA (3-parameter fit)	1165 ± 15	78 ± 12	6.9 ± 1.0
SASHA (2-parameter fit)	1177 ± 29	58 ± 5	4.9 ± 0.3
SASHA-VFA (2-parameter fit)	1163 ± 19	47 ± 5	4.1 ± 0.5
MOLLI	996 ± 12	43 ± 4	4.3 ± 0.3

Table 1 Mean, standard deviation, and coefficient of variation of myocardial T1 values in 4 healthy subjects

Values are reported as mean ± standard deviation across subjects.

¹Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada

Full list of author information is available at the end of the article

© 2014 Chow et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http:// creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Results

Two-parameter SASHA overestimated myocardial T_1 as compared to the three-parameter fit but with reduced variability (Table 1). Two-parameter SASHA-VFA showed similar mean T_1 values to three-parameter SASHA and with substantially reduced T_1 variability. Image artifacts from the bSSFP readout were consistently reduced with the SASHA-VFA sequence compared to the standard SASHA sequence, which may also contribute to the improved variability performance (Figure 1).

Conclusions

The SASHA sequence with VFA readout significantly reduces T_1 variability and reduces image artifacts. The current study suggests that two-parameter SASHA-VFA maintains the accuracy of standard three-parameter SASHA with significantly reduced T_1 variability, similar to the MOLLI sequence.

Funding

Canadian Institutes of Health Research, Women and Children's Health Research Institute, Alberta Innovates -Health Solutions.

Authors' details

¹Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada. ²Cardiovascular MR R&D, Siemens Healthcare USA, Inc., Chicago, Illinois, USA.

Published: 16 January 2014

References

- 1. Chow K, et al: MRM. 2013, doi:10.1002/mrm.24878.
- 2. Kellman P, et al: ISMRM. 2013, 21:1394.
- 3. Kellman P, et al: MRM. 2013, doi:10.1002/mrm.24793.

doi:10.1186/1532-429X-16-S1-M9

Cite this article as: Chow *et al.*: Improved precision in SASHA T_1 mapping with a variable flip angle readout. *Journal of Cardiovascular Magnetic Resonance* 2014 16(Suppl 1):M9.