

ORAL PRESENTATION

Open Access

Accuracy and reproducibility of four T₁ mapping sequences: a head-to-head comparison of MOLLI, ShMOLLI, SASHA, and SAPPHIRE

Sébastien Roujol^{1*}, Sebastian Weingartner^{1,3}, Murilo Foppa¹, Kelvin Chow⁴, Keigo Kawaji¹, Kraig V Kissinger¹, Beth Goddu¹, Sophie Berg¹, Peter Kellman⁵, Warren J Manning^{1,2}, Richard B Thompson⁵, Reza Nezafat¹

From 17th Annual SCMR Scientific Sessions New Orleans, LA, USA. 16-19 January 2014

Background

Quantitative myocardial T_1 mapping provides in-vivo tissue characterization for assessment of cardiomyopathies. Pre and post-contrast T_1 maps can be used to calculate the extracellular volume fraction (ECV) to detect diffuse myocardial fibrosis. Several imaging approaches have recently been proposed for measuring T_1 values [1-4], but no head-to-head comparison has been reported to cross-examine their accuracy and reproducibility. In this study, we compared both T_1 maps and ECV measurements from the following techniques: Modified Look-Locker Inversion Recovery (MOLLI) [1], Shortened MOLLI (ShMOLLI) [2], Saturation recovery single-shot acquisition (SASHA) [3], and SAturation Pulse Prepared Heart rate independent Inversion-REcovery sequence (SAPPHIRE) [4].

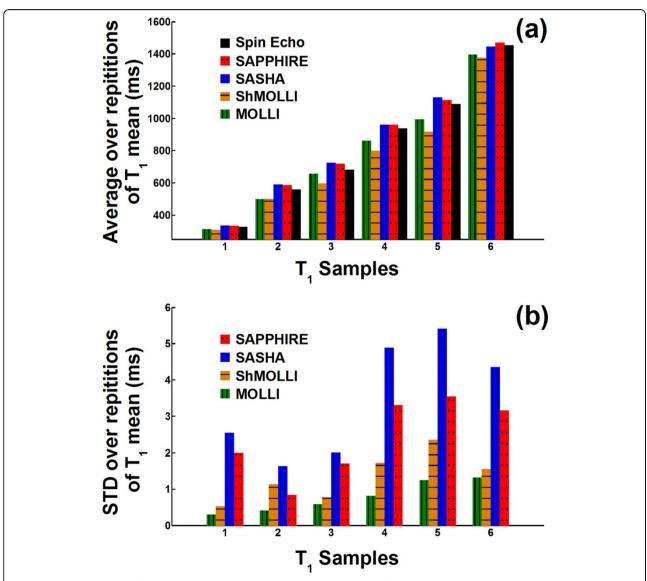
Methods

The four T_1 mapping methods were implemented on a 1.5 T Phillips scanner using a b-SSFP readout (TR/TE/ α = 3.1/1.5 ms/70°, FOV = 360 × 337 mm2, voxel size = 1.9 × 2.5 mm2, slice thickness = 8 mm, SENSE factor = 2). In a phantom experiment, the four methods were each

repeated 10 times and were compared to the gold standard T₁ measurements obtained using spin echo acquisitions (15 inversion times from 100 ms to 3000 ms). In-vivo analysis experiments was performed in 8 healthy subjects $(38 \pm 19 \text{ y}, 4 \text{ m})$, and in 10 patients $(56 \pm 14 \text{ y}, 6 \text{ m})$. Precontrast imaging was performed twice with the four methods. Healthy subjects were removed from the bore between the two pre-contrast scans to simulate a separate exam. Post-contrast T₁ mapping was performed twice at 15 and 30 mins post-injection. T1 maps were reconstructed offline using an in-house platform and were analyzed by a blinded observer. In all T₁ maps, the septum and the blood pool were manually delineated, and an ECV value was then computed from each pre and post-contrast T_1 map pair. For each method, T_1 measurement variations between the two sets of pre-contrast images and ECV measurement variations generated from the second pre-contrast T₁ and each of the two post-contrast T₁ data were examined.

Results

SASHA and SAPPHIRE were more accurate but less reproducible than MOLLI and ShMOLLI for T_1 mapping


in phantom experiments. MOLLI was more reproducible than ShMOLLI and SAPPHIRE was more reproducible than SASHA. There was a trend for MOLLI and ShMOLLI to be more reproducible than SASHA and SAPPHIRE for pre-contrast T_1 mapping in all subjects. There was no statistical significant difference in ECV measurement reproducibility among the four methods in both healthy subjects (One-way ANOVA, p=0.51) and patients (p=0.35). However, MOLLI and ShMOLLI yielded large errors in the derived ECV values due to error propagation of T_1 measurements.

Conclusions

Both SASHA and SAPPHIRE T_1 sequences yield excellent accuracy, but with lower reproducibility compare to MOLLI and ShMOLLI. Reproducibility of ECV measurements is similar with all methods, but MOLLI and ShMOLLI demonstrated large systematic errors.

Funding

NIH R01EB008743-01A2

Figure 1 Reproducibility of T₁ measurements in phantom containing T₁ samples from 300 ms to 1450 ms. MOLLI and ShMOLLI were less accurate and more reproducible than SASHA and SAPPHIRE. SAPPHIRE was also more reproducible than SASHA while having similar accuracy.

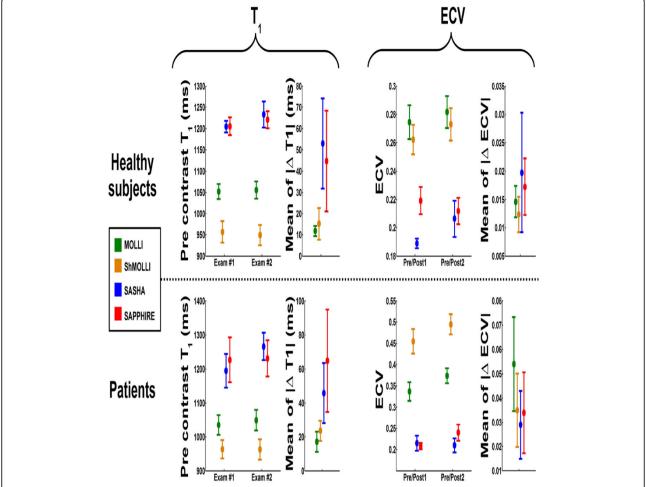


Figure 2 Reproducibility of T_1 and ECV measurements in healthy subjects and patients. MOLLI and ShMOLLI tend to be more reproducible than SASHA and SAPPHIRE for pre-contrast T_1 mapping. No statistical significant difference was found among the four methods in term of reproducibility of ECV measurements.

Authors' details

¹Medicine, BIDMC/Harvard Medical School, Boston, Massachusetts, USA.
²Radiology, BIDMC/Harvard Medical School, Boston, Massachusetts, USA.
³Computer Assisted Clinical Medicine, University Medical Center Mannheim/Heidelberg University, Mannheim, Germany.
⁴Biomedical Engineering, Faculty of Medicine and Dentistry/University of Alberta, Edmonton, Alberta, Canada.
⁵National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA.

Published: 16 January 2014

References

- 1. Messroghli: MRM 2004.
- 2. Piechnik: JCMR 2010.
- 3. Chow: MRM 2013.
- 4. Weingärtner: MRM 2013.

doi:10.1186/1532-429X-16-S1-O26

Cite this article as: Roujol *et al*.: Accuracy and reproducibility of four T₁ mapping sequences: a head-to-head comparison of MOLLI, ShMOLLI, SASHA, and SAPPHIRE. *Journal of Cardiovascular Magnetic Resonance* 2014 **16**(Suppl 1):O26.

Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

Submit your manuscript at www.biomedcentral.com/submit

