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DENSE CMR
Gregory J. Wehner1, Linyuan Jing2,3, Christopher M. Haggerty2,3, Jonathan D. Suever2,3, Jing Chen2,
Sean M. Hamlet4, Jared A. Feindt2, W. Dimitri Mojsejenko3, Mark A. Fogel5 and Brandon K. Fornwalt1,2,3,4,6*

Abstract

Background: Cardiovascular magnetic resonance (CMR) feature tracking is increasingly used to quantify cardiac
mechanics from cine CMR imaging, although validation against reference standard techniques has been limited.
Furthermore, studies have suggested that commonly-derived metrics, such as peak global strain (reported in 63% of
feature tracking studies), can be quantified using contours from just two frames – end-diastole (ED) and end-systole
(ES) – without requiring tracking software. We hypothesized that mechanics derived from feature tracking would
not agree with those derived from a reference standard (displacement-encoding with stimulated echoes (DENSE)
imaging), and that peak strain from feature tracking would agree with that derived using simple processing of only
ED and ES contours.

Methods: We retrospectively identified 88 participants with 186 pairs of DENSE and balanced steady state free precession
(bSSFP) image slices acquired at the same locations across two institutions. Left ventricular (LV) strains, torsion, and
dyssynchrony were quantified from both feature tracking (TomTec Imaging Systems, Circle Cardiovascular Imaging)
and DENSE. Contour-based strains from bSSFP images were derived from ED and ES contours. Agreement was
assessed with Bland-Altman analyses and coefficients of variation (CoV). All biases are reported in absolute percentage.

Results: Comparison results were similar for both vendor packages (TomTec and Circle), and thus only TomTec
Imaging System data are reported in the abstract for simplicity. Compared to DENSE, mid-ventricular circumferential
strain (Ecc) from feature tracking had acceptable agreement (bias: − 0.4%, p = 0.36, CoV: 11%). However, feature
tracking significantly overestimated the magnitude of Ecc at the base (bias: − 4.0% absolute, p < 0.001, CoV: 18%) and
apex (bias: − 2.4% absolute, p = 0.01, CoV: 15%), underestimated torsion (bias: − 1.4 deg/cm, p < 0.001, CoV: 41%), and
overestimated dyssynchrony (bias: 26 ms, p < 0.001, CoV: 76%). Longitudinal strain (Ell) had borderline-acceptable
agreement (bias: − 0.2%, p = 0.77, CoV: 19%). Contour-based strains had excellent agreement with feature tracking
(biases: − 1.3–0.2%, CoVs: 3–7%).
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Conclusion: Compared to DENSE as a reference standard, feature tracking was inaccurate for quantification of apical
and basal LV circumferential strains, longitudinal strain, torsion, and dyssynchrony. Feature tracking was only accurate
for quantification of mid LV circumferential strain. Moreover, feature tracking is unnecessary for quantification of
whole-slice strains (e.g. base, apex), since simplified processing of only ED and ES contours yields very similar
results to those derived from feature tracking. Current feature tracking technology therefore has limited utility
for quantification of cardiac mechanics.
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Background
Cardiac mechanics, such as strain, torsion, and dyssyn-
chrony, are important indicators of cardiac function and in-
dependent predictors of serious outcomes, even when
accounting for traditional measures such as ejection fraction
[1, 2]. Several advanced cardiovascular magnetic resonance
(CMR) sequences have been developed to assess cardiac me-
chanics including tagging [3, 4], displacement encoding with
stimulated echoes (DENSE) [5–7], strain encoding (SENC)
[8], and tissue phase mapping (TPM) [9]. While these tech-
niques can provide reference standard measurements of
myocardial motion and deformation, their use is often clinic-
ally impractical. Furthermore, because they are specialized
non-clinical techniques, there are few large datasets available
that could be used to guide the clinical use of these tech-
niques. As such, there has been growing interest in the use
of feature tracking software to approximate the mechanics
produced by reference standard techniques [10–12]. While
feature tracking is simple to use and requires only standard
anatomical cine sequences that are widely available, it is im-
portant to assess how well measures of cardiac mechanics
such as left ventricular (LV) strain, torsion, and dyssynchrony
derived from feature tracking agree with those derived from
reference standard techniques.
While results from feature tracking have been com-

pared to those from tissue tagging [10, 13–16] and TPM
[17], many of these studies have been limited in scope.
The largest study [10], with 191 patients with Duchenne’s
Muscular Dystrophy and 42 healthy controls, surveyed
only mid-ventricular short-axis images, while other studies
have had limited sample sizes (n = 18 [16], n = 20 [13]).
Such studies have suggested that feature tracking may
have poor reproducibility and poor agreement with refer-
ence standard techniques for some measures of cardiac
mechanics [12, 13] due to the following potential limita-
tions: 1) feature tracking derives displacement fields by
propagating myocardial borders from frame to frame,
which relies on quantification of local changes in signal in-
tensity and therefore is likely to fail when quantifying mo-
tion parallel to or inside the myocardium where there are
no features; 2) feature tracking only captures in-plane dis-
placement, and through-plane motion of the myocardium
violates the assumptions required to track pixel data.

DENSE, an advanced CMR technique, encodes a com-
ponent of tissue displacement into the phase of the
CMR image [5]. The reconstructed phase image mea-
sures displacements directly at the pixel-level with
higher spatial resolution (2–3 mm) than myocardial tag-
ging, which is limited by the number of tag lines that
can be reliably tracked in the image. Therefore, motion
within the myocardium can be accurately captured in all
directions. Indeed, data from a deforming phantom
demonstrated that DENSE has equal or better perform-
ance than tagged CMR, depending on the measured car-
diac mechanic [18]. Several advancements in DENSE
acquisition since its introduction, such as complementary
spatial modulation of magnetization (CSPAMM) artifact
suppression [6] and efficient spiral readouts [7], make it an
ideal, highly reproducible and validated technique for refer-
ence standard measurements of myocardial motion and
deformation used by numerous previous studies [18–24].
However, none of the feature tracking validation studies
have been performed with DENSE. Indeed, a recent study
[25] included data from both DENSE and feature tracking,
but no direct comparisons were made.
Additionally, a literature review including 62 CMR fea-

ture tracking studies found that slice-wise strains (i.e.
the average strain over an entire image, such as basal,
mid-ventricular, or apical short-axis slices) are the most
commonly reported measures derived from feature
tracking (Table 1 and Additional file 1). In total, 39 stud-
ies (63%) reported either circumferential, longitudinal, or
radial slice-wise strain, and 13 studies (21%) reported
only those strains. However, slice-wise strains, which are
reflective of the change in length of an entire contour
between just two frames, end-diastole (ED) and
end-systole (ES), should not require segmental motion
tracking [26]. This suggests that the most commonly re-
ported results from feature tracking could be easily
assessed without performing tracking, by simply using
the ED and ES contours which are already generated
during most clinical CMR scans.
We hypothesized that LV strains, torsion, and dyssyn-

chrony estimated from feature tracking would not agree
well with those measured by DENSE as a reference
standard. We also hypothesized that slice-wise strains
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from measuring the change in length of entire contours
between the ED and ES frames (“contour-based” strains)
would agree well with strains reported by feature
tracking.

Methods
Study population
We reviewed our database of CMR participant datasets
that were acquired from 2013 to 2016 at two institutions
(University of Kentucky and the Children’s Hospital of
Philadelphia) for all instances where both spiral cine
DENSE and balanced steady state free precession (bSSFP)
were acquired at the same slice location either in basal,
mid-ventricular, or apical short-axis image planes or in the
four-chamber image plane. The studies were approved by
the local IRBs and all participants gave informed consent.
During the review, no exclusions for diagnosis or the pres-
ence of cardiovascular risk factors were applied.

Image acquisition
All datasets from the University of Kentucky were acquired
on a 3 T system (Trio, Siemens Healthineers, Erlangen,
Germany) while datasets from the Children’s Hospital of
Philadelphia were acquired on a 1.5 T system (Avanto, Sie-
mens Healthineers). Spiral cine DENSE images with dis-
placements encoded in at least the two in-plane
dimensions were acquired with an established spiral se-
quence [7, 18, 21] using the following parameters: 6 spiral
interleaves with 2 spiral interleaves acquired per temporal
frame, 250 × 250 to 360 × 360 mm2 field of view, 128 × 128

image matrix, 1.95 × 1.95 to 2.81 × 2.81 mm2 pixel size,
8 mm slice thickness, 1.08 ms echo time, 15 to 17 ms repe-
tition time, 17 to 34 ms temporal resolution. Simple or bal-
anced encoding [19] with an encoding frequency between
0.04 and 0.10 cycles/mm [20] was used to measure in-plane
displacements, while through-plane dephasing [27] and
CSPAMM [6] were used for echo suppression. Cine bSSFP
images were acquired at the same locations as the DENSE
images using the following parameters: 1.15 × 1.15 to
1.77 × 1.77 mm2 pixel size, 7 to 10 mm slice thickness, 1.15
to 1.51 ms echo time, 2.70 to 3.43 ms repetition time, 8 to
15 k-space segments (true number of frames, 14–30 recon-
structed frames), 20.2 to 49.7 ms temporal resolution.

DENSE strain analysis
Cardiac strains were derived from the DENSE images as pre-
viously described using DENSEanalysis, an open-source ap-
plication [28] written in MATLAB (The Mathworks Inc.,
Natick, Massachusetts, USA) [22]. Examples of image ana-
lysis for DENSE as well as feature tracking are shown in
Fig. 1. The post-processing steps for each cine DENSE slice
included manual segmentation of the LV myocardium and
semi-automated phase unwrapping to obtain the 2D dis-
placements within each cardiac frame [22]. Following the
unwrapping, spatial smoothing and temporal fitting of dis-
placements (10th order polynomial) were performed as pre-
viously described to obtain smooth trajectories for all tissue
points beginning at end-diastole and continuing through
systole and into mid-diastole [22]. Circumferential (Ecc) and
longitudinal (Ell) strains were calculated from short-axis and
four-chamber images, respectively, using the Lagrangian
Green finite strain tensor. Both circumferential and longitu-
dinal strain were defined as negative for tissue shortening.
For participants (n = 38) that had all three short-axis images
(basal, mid-ventricular, and apical), cardiac torsion was calcu-
lated as the gradient of twist down the long axis of the left
ventricle by finding the slope of the linear regression line be-
tween twist and longitudinal position. Twist was defined as
positive for counter-clockwise rotation relative to the cen-
troid of the LV when viewing a short-axis image from the
apex towards the base. Torsion was positive when the apex
was twisting more positively than the base. Dyssynchrony
was quantified in these same participants (n = 38). To
quantify dyssynchrony, cross-correlation delays for
each segmental circumferential strain curve from the
basal, mid-ventricular, and apical short-axis slices
were calculated relative to a patient-specific reference
curve [29]. Dyssynchrony was defined as the standard
deviation of the segmental delays.

Feature tracking strain analysis
Strain and twist were derived from bSSFP imaging with
Diogenes feature tracking software (2D CPA MR,
version 1.1.2.36, TomTec Imaging Systems, Munich,

Table 1 Reported mechanics from 62 CMR feature tracking
studies

Number of Studies

Mechanics

Circumferential Strain – slice-wise 36

Longitudinal Strain – slice-wise 28

Radial Strain – slice-wise 21

Circumferential Strain – segmental 18

Longitudinal Strain – segmental 12

Radial Strain – segmental 12

Systolic Strain Rate 5

Diastolic Strain Rate 6

Torsion 8

Torsion Rate 5

Synchrony 6

Atrial Strain 8

Right Ventricular Strain - any 13

Right Ventricular Strain - segmental 7

Othera 3
aFeature tracking in non-CMR modality
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Germany). For short-axis images, both endocardial and
epicardial contours were manually drawn at ED and the
software automatically propagated the contours through
the remaining frames. For the four-chamber image, only
an endocardial contour was drawn before propagation,
since there is minimal transmural difference in longitu-
dinal strain (Ell) between the endocardium and epicar-
dium as compared to the typical transmural differences
seen in circumferential strain (Ecc). In the case of poor
tracking, ED contours were redrawn and the propaga-
tion repeated until the tracking was visually acceptable.
Ecc, Ell, and twist were derived from output files gener-
ated by the software. In short-axis slices and for appro-
priate comparisons to DENSE, which measures strain
and twist throughout the myocardial wall, the endocar-
dial and epicardial strains and twist from feature track-
ing were averaged together to obtain a single transmural
value. Additional file 2 contains comparisons between
just the endocardial strain from feature tracking and
DENSE. Torsion and dyssynchrony were computed
using the same calculations as above for DENSE im-
aging. Studies using feature tracking have stated that
strains were derived using the 1D Lagrangian calculation
[14, 30, 31], and this was reaffirmed through email cor-
respondence with the vendor.
To assess Ecc and Ell via the change in length of entire

contours, the contour position data reported in the

output files for only the ED and ES frames from feature
tracking using the bSSFP images were used. The frame
with the smallest contour circumference was defined as
the ES frame. By using these contours, rather than hav-
ing an observer draw them separately, any intra- and
inter-observer variability was removed for the compari-
son between contour-based strains and feature tracking.
However, there should be no fundamental difference in
manually-drawn contours and the TomTec propagated con-
tours. This enabled a pure assessment of whether regional
tracking information, which would be known to the Tom-
Tec strain calculation, is different from just using the lengths
of the ED and ES contours. Contour-based strains were de-
rived from the 1D Lagrangian strain calculation.
Finally, it is important to consider the mathematics of

the strain calculations if they are different between two
techniques. A full derivation of the difference between
strains computed from the 2D Lagrangian Green strain
tensor of DENSE and the 1D Lagrangian strain from
feature tracking and contours is provided in
Additional file 3. The relationship can also be found
throughout the literature on deformation mechanics
(e.g. see chapter 3, page 119, eq. 3.24.12 [32]). From this
relationship, we propose that a correction can be applied
to the 1D Lagrangian strain results to allow a proper
comparison with the DENSE strain results from the 2D
Lagrangian Green strain tensor. Specifically, given a 1D

TomTec Displacement Encoding with Stimulated Echoes (DENSE)

Magnitude X-Phase Y-Phase

Fig. 1 Representative images with contour overlay from feature tracking (TomTec Imaging Systems) and DENSE in mid-ventricular short-axis (top)
and four-chamber (bottom) views. End-diastolic images are shown for both DENSE and feature tracking in a representative subject. In feature
tracking (TomTec), only endocardial contours were used for longitudinal strain calculation. Contour-based strains were derived from the same
end-diastolic/end-systolic contours exported from TomTec
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Lagrangian strain, ε, we propose to adjust that value by
adding (1/2) ε2 to account for differences in the strain
calculations per the following equation:

2D Lagrangian Green Strain ¼ εþ 1
2

� �
εð Þ2:

In order to validate our findings in feature tracking,
we also analyzed all data using a separate commercial
feature tracking software (cvi42, Circle Cardiovascular
Imaging Inc., Calgary, Alberta, Canada). Detailed de-
scription of data analyses and results from this compari-
son are shown in Additional file 4. Since the results
were not substantially different between the two vendor
platforms, the term “feature tracking” refers to TomTec
only in the primary results below for simplification.

Statistics
Agreement of strains and torsion between feature track-
ing and DENSE was assessed with Bland-Altman ana-
lyses and coefficients of variation (CoV). Based on
similar analyses in previous studies [24, 33], CoVs less
than 20% were interpreted as acceptable. Paired t-tests
were utilized to determine whether biases were statisti-
cally significant from zero at a significance level of 0.05.
Comparisons between feature tracking and DENSE were
made both before and after adjusting the feature track-
ing results to account for the differences in strain calcu-
lations. Bland-Altman analyses and CoVs were also used
to compare adjusted feature tracking strains to adjusted
contour-based strains. Continuous data are presented as
mean ± standard deviation.

Results
Study population
From the review of our database, 89 unique participants
were identified that had spiral cine DENSE and bSSFP
imaging at the same image locations. Of those, 1 partici-
pant had poor DENSE image quality due to aberrant
prospective electrocardiogram (ECG) triggering and was
therefore omitted from analyses. From these 88 partici-
pants, we obtained 186 independent image pairs, region-
ally distributed as follows: 39 basal short-axis, 69
mid-ventricular short-axis, 38 apical short-axis, and 40
four-chamber images. For torsion and dyssynchrony, 38
participants had all 3 of the necessary short-axis images
(i.e. all participants that had an apical short-axis image
also had the other short-axis images). Characteristics of
the participants for each image location are reported in
Table 2. Compared to other regions, there was a prepon-
derance of healthy individuals in the four-chamber im-
ages due to only acquiring short-axis images in many
patient studies.

Comparison between feature tracking and DENSE
When using just the endocardial strain from feature
tracking, Ecc was significantly overestimated compared
to DENSE, which measured strain throughout the myo-
cardial wall (Additional file 2). The remainder of the
Ecc, torsion, and dyssynchrony results are based on the
average of the endocardial and epicardial values from
feature tracking in order to better approximate the
DENSE results as described in the Methods.
Before adjusting for differences in the strain calcula-

tions, Ecc was significantly overestimated by feature
tracking compared to DENSE by between 2.3 and 6.0%
(absolute, Table 3). Similarly, feature tracking tended to
over-estimate Ell by 1.4%, although the result was not
statistically significant (p = 0.08).
After adjusting the feature tracking results to account

for differences in the strain calculations, feature tracking
strains all decreased in magnitude – closer to correspond-
ing DENSE values – such that the mid-ventricular Ecc
were no longer different (−17.5 vs −17.2%, p = 0.36). How-
ever, basal and apical Ecc remained significantly overesti-
mated by feature tracking even after adjustment (by 4.1
and 2.5% absolute, respectively [p < 0.001 for both]). A
physiologic gradient of increasing Ecc magnitude from the
base to the mid-ventricle to the apex was observed in the
DENSE results. This gradient was not present in the fea-
ture tracking results before or after adjustment. On
Bland-Altman analyses, the 95% limits of agreement and
CoVs were lower after the feature tracking results were
adjusted (Table 4, Fig. 2). Ecc at the mid-ventricular level
had the best agreement between adjusted feature tracking
and DENSE (95% limits: ±6.3%, CoV: 10.9%). All other
strains demonstrated CoVs above 20% before applying the
adjustment. Those same CoVs dropped below 20% after
the adjustment. The CoV for Ell was 19.3%.
Torsion was significantly underestimated by feature

tracking compared to DENSE (2.1 vs 3.5 deg/cm, p <
0.001). Dyssynchrony was significantly overestimated by

Table 2 Participant characteristics

Base
(n = 39)

Mid
(n = 69)

Apex/Torsion/
Dyssynchrony
(n = 38)

Four-Chamber
(n = 40)

Age, years 27 ± 12 26 ± 14 27 ± 12 22 ± 9

Male, n (%) 23 (59) 44 (64) 22 (58) 23 (58)

Diagnosis, n (%)

Healthy 24 (62) 51 (74) 23 (61) 39 (98)

Tetralogy of Fallot 6 (15) 6 (9) 6 (16) 1 (3)

Duchennes 1 (3) 1 (1) 1 (3) 0 (0)

Hypertrophic CM 2 (5) 2 (3) 2 (5) 0 (0)

Ischemic CM 1 (3) 2 (3) 1 (3) 0 (0)

Other 5 (13) 7 (10) 5 (13) 0 (0)

CM: Cardiomyopathy
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feature tracking (42 vs 16 ms, p < 0.001). Both torsion
and dyssynchrony had poor agreement with DENSE as
demonstrated by wide 95% limits and large CoVs
(Fig. 3).

Comparison between feature tracking and contour-based
strain
Excellent agreement was observed between all Ecc and Ell
from feature tracking and contour-based strains (Table 5,
Fig. 4) with CoVs between 3.2 and 7.0%. Bland-Altman
95% limits (between ±2.2 and ± 3.8%) were substantially
lower than those observed during the comparisons be-
tween feature tracking and DENSE.
While the agreement between feature tracking and

contour-based strain was excellent, we investigated why
it was not perfect. Specifically, we found discrepancies
between the appearance of the propagated contours and
the strains that feature tracking reported for them.
For example, Fig. 5 shows propagated endocardial
contours for frame 1 and frame 30 (the last frame)
for a short-axis image from a representative subject.
There are noticeable differences in the contour

lengths between those two frames, and the contour-based
strain calculation would quantify a small strain for
frame 30 relative to frame 1. However, the feature
tracking software reported exactly zero strain for all
segments in both frame 1 and frame 30, which is in-
consistent with the noticeable differences between the
contours.

Validation of feature tracking using circle
In summary, the results from Circle are similar to the
findings from TomTec. Consistent with TomTec, Circle
significantly overestimated basal and apical Ecc, Ell, and
dyssynchrony compared to DENSE (all p < 0.001,Add-
itional file 4 Table S3), and the amount of overesti-
mation was in general larger than that of TomTec
(Additional file 4 Table S4, Figure S4). Only
mid-ventricular Ecc from Circle showed good agreement
with DENSE (bias = 0.7%, CoV = 11%). Opposite to
TomTec, torsion was overestimated in Circle compared
to DENSE (bias = 1.5 deg/cm, CoV = 36%). The agree-
ments of torsion and dyssynchrony between Circle and
TomTec, as well as between Circle and DENSE, were

Table 4 Bland-Altman analyses and coefficients of variation comparing Feature Tracking to the reference (DENSE)

Feature Tracking (Unadjusted)
vs. DENSE

Feature Tracking (Adjusted)
vs. DENSE

Bias 95% Limits CoV Bias 95% Limits CoV

Circumferential Strain (Absolute %)

Base −6.5 ±7.7 25.1 −4.0 ±6.7 17.8

Mid −2.3 ±7.3 13.7 −0.4 ±6.3 10.9

Apex −6.0 ±14.3 22.3 −2.4 ±10.8 14.8

Longitudinal Strain (Absolute %)

Four-Chamber −1.5 ±10.7 21.3 −0.2 ±9.3 19.3

Torsion (deg/cm) −1.4 ±2.4 41.1 – – –

Dyssynchrony (ms) 26 ±56 76.3 – – –

Unadjusted and Adjusted indicate the feature tracking results before and after adjustment, respectively
CoV indicates coefficient of variation (%)

Table 3 Summary of strains and torsion from feature tracking and DENSE

Feature Tracking
(Unadjusted)

Feature Tracking
(Adjusted)

DENSE p1 p2

Circumferential Strain (%)

Base −21.7 ± 4.2 −19.3 ± 3.3 −15.2 ± 3.7 < 0.001* < 0.001*

Mid −19.5 ± 4.3 −17.5 ± 3.5 −17.2 ± 3.4 < 0.001* 0.36

Apex −25.4 ± 7.8 −21.9 ± 5.7 −19.4 ± 3.6 < 0.001* 0.01*

Longitudinal Strain (%)

Four-Chamber −15.4 ± 5.1 −14.1 ± 4.3 −13.8 ± 2.9 0.083 0.77

Torsion (deg/cm) 2.1 ± 1.2 – 3.5 ± 0.9 < 0.001* –

Dyssynchrony (ms) 42 ± 22 – 16 ± 20 < 0.001* –

Unadjusted and Adjusted indicate the feature tracking results before and after adjustment, respectively
p1, Feature Tracking (Unadjusted) vs. DENSE; p2, Feature Tracking (Adjusted) vs. DENSE
*Indicates statistical significance (p < 0.05)
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very poor with unacceptable limits and CoVs (Fig. S5).
Detailed results are included in Additional file 4.

Discussion
This study evaluated the utility of commercially available
feature tracking software for quantifying measures of
cardiac mechanics, including LV strains, torsion and dys-
synchrony. Our primary findings included: 1) the only
truly acceptable agreement between feature tracking and
the reference standard (DENSE) was observed for
mid-ventricular Ecc, 2) feature tracking significantly

overestimated the magnitude of Ecc in basal and apical
images, 3) feature tracking overestimated Ell in four-
chamber images, 4) feature tracking significantly overes-
timated dyssynchrony and under- or over- estimated tor-
sion depending on the vendor with unacceptable CoVs,
and 5) slice-wise strains from the change in length of
entire contours (contour-based strains) had excellent
agreement with slice-wise strains reported by feature
tracking.

Slice-wise strains from feature tracking and contour-
based strains
Feature tracking has emerged as a simple and convenient
tool for estimating cardiac mechanics from standard CMR
imaging. However, we found that the most commonly-re-
ported mechanics from feature tracking (slice-wise Ecc and
Ell) can be reproduced by contour-based strains. Such
agreement between feature tracking and contour-based
strains has been previously reported along with the sugges-
tion that manual border delineation could be a low-cost al-
ternative to purchasing feature tracking software [26].
Because of the excellent agreement between feature track-
ing and contour-based strain, regional tracking capabilities
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Fig. 2 Bland-Altman analyses for circumferential and longitudinal strains
between feature tracking and DENSE. Analyses were performed both
before (left column) and after (right column) adjusting the feature
tracking results to account for differences in the strain calculation. All
differences were calculated by subtracting the DENSE strain from the
feature tracking strain. All biases and 95% limits of agreement improved
after adjusting the feature tracking strains. The red shaded region
highlights the bias. The best agreement was observed in mid-ventricular
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Table 5 Bland-Altman analyses and coefficients of variation for
feature tracking compared to contour-based strains

Feature Tracking vs. Contour Strain

Bias 95% Limits CoV

Circumferential Strain (Absolute %)

Base −0.0 ±2.8 3.6

Mid −0.5 ±2.2 3.2

Apex 0.2 ±3.8 4.4

Longitudinal Strain (Absolute %)

Four-Chamber −1.3 ±2.4 7.0

CoV indicates coefficient of variation (%)
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and the cost of the feature tracking software are not re-
quired to assess these metrics. Many of the insights from
previous feature tracking studies could have been easily
produced without the software by the manual delineation
of borders at two time points, ED and ES, which is already
routine for most clinical examinations in which LV volumes
are reported.
However, the use of feature tracking or manual delin-

eation to assess slice-wise strains is not beyond reproach.
Only mid-ventricular Ecc had good agreement between
feature tracking and DENSE with 95% limits of agree-
ment of ±6.3% and a CoV of 10.9%. Previous studies that
assessed the agreement between feature tracking and
myocardial tagging have shown 95% limits ranging from
±3.3% [10] to ±9.1% [16], with several other studies in
between [13, 14, 31]. However, for Ecc in basal and ap-
ical images, we found significant biases and larger CoVs,
which indicates that feature tracking and DENSE do not
agree as well in those regions. In particular, apical Ecc
had the largest 95% limits of agreement (±10.8%), which
is consistent with a previous study that also observed
that the apical region had the largest 95% limits (±12.8%
at 1.5 T and ±9.2% at 3 T) [16]. The largest bias (−4.0%)
was observed in basal Ecc. This bias was large enough to
disrupt the physiologic gradient in Ecc from base to apex
that was observed in the DENSE results and has been
documented extensively [21, 34–36]. These inconsisten-
cies between feature tracking and DENSE at the basal
and apical levels are likely due to both through-plane
motion, which is most prominent at the base and invali-
dates the fundamental assumption that a segment of tis-
sue can be observed and tracked through the entire
cardiac cycle in a single 2D image plane, and the diffi-
culty in tracking the true endocardial contour, which
may be more prominent at the apex due to papillary
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Fig. 4 Bland-Altman analyses for circumferential and longitudinal strains
between feature tracking and contour-based strains. All differences were
calculated by subtracting the feature tracking strain from the contour-
based strain. The red shaded region highlights the bias. Excellent
agreement (small biases and tight 95% limits) was observed for all
circumferential and longitudinal strains. CoV, coefficient of variation

Fig. 5 Propagated contours and reported feature tracking strains are
inconsistent (representative subject). The propagated endocardial contours
for frame 1 and frame 30 (the last frame) of a representative subject are
shown along with the strains reported by feature tracking. Despite the
differences in contour length, which would be measured as strain by the
contour-based calculation, the feature tracking software reported zero
strain in all segments and, thus, zero slice-wise strain. When deriving strains,
the feature tracking software may employ curve-fitting after propagating
the contours, which would lead to differences between the reported
feature tracking strains and the contour-based strains
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musculature and trabeculations. Inter-test variability in
both techniques, while larger in feature tracking [12, 20],
also contributes to imperfect agreement between them.
Among the slice-wise strains quantified in this study, Ell
had the highest CoV (19.3%) along with high 95% limits
of agreement compared to DENSE (±9.3%). This is con-
sistent with a previous comparison between feature
tracking and myocardial tagging which found 95% limits
of agreement to be ±9.5% [13].
To reiterate, for slice-wise strains in general, manual

contour delineation at just ED and ES can replace results
from feature tracking. However, neither agree strongly
with a reference standard technique like DENSE with
the exception of mid-ventricular Ecc.

Torsion, Dyssynchrony, and other mechanics
Less commonly-reported measures of mechanics from fea-
ture tracking include segmental strains, strain rates, torsion,
and dyssynchrony. However, these are precisely the mea-
surements for which accurate feature tracking would be
most useful since none of these can be quantified by the
manual delineation of contours at only ED and ES. Unfor-
tunately, feature tracking has limited success in accurately
and reproducibly quantifying these mechanics.
Previous studies of segmental strains and strain rates from

feature tracking have demonstrated poor reproducibility and
poor agreement with reference standards [12, 16]. Similar re-
sults were observed for torsion in the present study where
torsion from feature tracking (TomTec) significantly under-
estimated DENSE by 1.4 deg/cm on average, while torsion
from Circle overestimated DENSE by 1.5 deg./cm. This large
bias is consistent with the literature as the torsion found by
DENSE (3.5 ± 0.9 deg/cm) is similar to previous results from
DENSE (3.1 to 3.9 deg./cm) [21] and myocardial tagging (3.4
to 3.7 deg/cm) [37] while the torsion result from TomTec
(2.1 ± 1.2 deg/cm) is similar to previous feature tracking
studies (2.3 ± 0.8 deg./cm) [33]. Furthermore, the CoV and
95% limits of agreement for comparing DENSE and feature
tracking were high (41.1% and ± 2.4 deg/cm, respectively).
Another previous study also found poor agreement and cor-
relation between torsion derived from feature tracking and
myocardial tagging as well as poor reproducibility from fea-
ture tracking [15]. The poor results from feature tracking
using bSSFP images are likely due to the difficulty in tracking
myocardial motion in the circumferential direction. While a
strong gradient between the blood pool and the myocardium
exists for accurately tracking the location of the endocardial
contour in bSSFP imaging, the gradients in the orthogonal
direction, which are necessary for tracking twist along that
contour, are much weaker. Therefore, it is nearly impossible
to track motion parallel to the myocardial wall unless add-
itional features (such as papillary muscles) are present for
tracking.

In the present study, dyssynchrony was significantly
overestimated compared to DENSE (42 ± 22 vs 16 ±
20 ms) while demonstrating large 95% limits of agreement
(±56 ms) and CoV (76.3%). A previous study has also
demonstrated poor reproducibility for the quantification
of dyssynchrony from segmental Ecc (CoV: 37.5%) [38].
The poor agreement between feature tracking and DENSE
is largely due to the need for accurate segmental strains
within the dyssynchrony calculation. Poor reproducibility
of segmental strains, which has been demonstrated for
feature tracking [12], likely resulted in both erroneously
high measured dyssynchrony within volunteers (i.e. a bias)
and greater variability in general.

Limitations
While this study evaluated the agreement between measure-
ments derived from feature tracking and those same mea-
sures derived from a reference standard DENSE sequence,
we could not evaluate the prognostic utility of the measures.
While we observed imperfect agreement between the tech-
niques, it is still possible that feature tracking (or manual
contour delineation) produces useful results. However, care-
ful consideration is required before generalizing results from
reference standard techniques to feature tracking. There may
be cases where only a reference standard technique is suffi-
cient (e.g., identifying a gradient in Ecc from base to apex).
Measures of radial strain were not included in this study due
to well-known poor reproducibility [12, 13]. In addition, the
current study did not evaluate all patient populations. Differ-
ent populations will likely show different levels of agreement.
In particular, populations with poor function and reduced
through-plane motion would be expected to have better
agreement between feature tracking and reference standard
techniques. However, since changes in strains may precede
changes in other functional measures, quantification of car-
diac strains is likely most important in populations with
healthy or nearly healthy function (e.g. pediatric obesity
[23]). While it is common to assess the agreement between
feature tracking and reference standard techniques with only
healthy participants [13], we note that there was a prepon-
derance of healthy subjects in the assessment of Ell com-
pared to other strains in this study.

Conclusion
Compared to DENSE as a reference standard, feature
tracking was inaccurate for quantification of apical and
basal LV Ecc, Ell, torsion, and dyssynchrony. Feature
tracking was only accurate for quantification of mid LV
Ecc. Moreover, feature tracking is unnecessary for quan-
tification of global peak strains, since simplified process-
ing of only ED and ES contours yields very similar
results to those derived from feature tracking. Current
commercial feature tracking technology therefore has
limited utility for quantification of cardiac mechanics.
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