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Abstract 

Background:  Measurement of cardiac structure and function from images (e.g. volumes, mass and derived param-
eters such as left ventricular (LV) ejection fraction [LVEF]) guides care for millions. This is best assessed using cardiovas-
cular magnetic resonance (CMR), but image analysis is currently performed by individual clinicians, which introduces 
error. We sought to develop a machine learning algorithm for volumetric analysis of CMR images with demonstrably 
better precision than human analysis.

Methods:  A fully automated machine learning algorithm was trained on 1923 scans (10 scanner models, 13 institu-
tions, 9 clinical conditions, 60,000 contours) and used to segment the LV blood volume and myocardium. Perfor-
mance was quantified by measuring precision on an independent multi-site validation dataset with multiple patholo-
gies with n = 109 patients, scanned twice. This dataset was augmented with a further 1277 patients scanned as part 
of routine clinical care to allow qualitative assessment of generalization ability by identifying mis-segmentations. 
Machine learning algorithm (‘machine’) performance was compared to three clinicians (‘human’) and a commercial 
tool (cvi42, Circle Cardiovascular Imaging).

Findings:  Machine analysis was quicker (20 s per patient) than human (13 min). Overall machine mis-segmentation 
rate was 1 in 479 images for the combined dataset, occurring mostly in rare pathologies not encountered in training. 
Without correcting these mis-segmentations, machine analysis had superior precision to three clinicians (e.g. scan-res-
can coefficients of variation of human vs machine: LVEF 6.0% vs 4.2%, LV mass 4.8% vs. 3.6%; both P < 0.05), translating 
to a 46% reduction in required trial sample size using an LVEF endpoint.

Conclusion:  We present a fully automated algorithm for measuring LV structure and global systolic function that bet-
ters human performance for speed and precision.

Keywords:  Machine learning, Cardiovascular imaging, Cardiac magnetic resonance, Ventricular function, Image 
processing
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Background
Measures of cardiac size, mass, and function derived 
from imaging are some of the most fundamental bio-
markers in medicine. For example, left ventricular (LV) 

Open Access

*Correspondence:  j.moon@ucl.ac.uk
1 Institute of Cardiovascular Science, University College London, London, 
UK
Full list of author information is available at the end of the article

http://orcid.org/0000-0001-8071-1491
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12968-022-00846-4&domain=pdf


Page 2 of 11Davies et al. Journal of Cardiovascular Magnetic Resonance           (2022) 24:16 

ejection fraction (LVEF) determines selection for drug 
therapy in heart failure [1–3], detects myocardial injury 
(e.g. in cardio-oncology) [4], acts as a gatekeeper for ~ $9 
billion spent per year on cardiac devices, and acts as sur-
rogate endpoints for drug development and outcome 
prediction [5–7].

LVEF was initially proposed as a simple way of measur-
ing heart function using cardiac catheterization [8]. The 
introduction of imaging modalities such as echocardiog-
raphy, cardiac computed tomography and cardiovascular 
magnetic resonance (CMR) permitted absolute blood 
and myocardial volume measurements. CMR is accepted 
as the best technique for measuring cardiac structure and 
global systolic function (i.e., LVEF) [9]. Image acquisition 
is standardized and can be delivered in as little as 15 min 
[10, 11], but the image analysis process can take as long, 
requiring analysis by a clinician, which imparts variability 
because of intra- and inter-operator differences [12, 13].

Recent developments in deep learning using convolu-
tional neural networks (CNN)—computational models 
inspired by the architecture of the human brain—have 
revolutionized automated image analysis [14]. The 
potential of CNNs in healthcare is being recognized; 
for example, a deep learning system has been shown to 
improve on human performance for detecting breast 
cancer in mammograms [15]. Many CNN applications 
in cardiac image segmentation have been described 

and deployed within commercial packages [16–18], but 
none surpass human performance and most algorithms 
are not directly compared to human analysis on the 
same data, nor validated on independent clinical data-
sets [19].

We hypothesized that a carefully trained, fully auto-
mated machine learning analysis could be developed 
and proven to exceed human performance on any 
CMR scanner and any (non-congenital) disease. This 
approach requires a means of evaluating and comparing 
CMR measures of myocardial structure and function, 
but this is hampered by the lack of a truth standard. 
Most existing approaches report measurement accu-
racy, treating expert analysis (or a consensus thereof ) 
as a truth standard, but this is fundamentally flawed 
because of the inherent variability and subjectivity of 
humans. We therefore concentrate on measurement 
precision (reproducibility) and develop an evaluation 
framework using an independent dataset to quantify 
measurement precision (reproducibility), which deter-
mines clinical smallest detectable interval change and 
research study sample size.

Methods
An overview of the study design is illustrated in Fig. 1 
and detailed below.

Fig. 1  Overview of study design. A training set of segmented images from 1932 patients with multiple diseases from multiple centres were used 
to train four convolutional neural networks (CNNs). CNN segmentations were combined to measure left ventricular (LV) cavity volumes, systolic 
function and myocardial mass. Machine segmentations were compared to clinical segmentations on an independent dataset to measure precision. 
EDV end diastolic volume, ESV end systolic volume, EF ejection fraction, LVM LV mass, MV mitral valve, SAx short axis
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Automated image analysis approach
We use deep fully CNNs to annotate (“segment”) the LV 
blood pool and myocardium from CMR image datasets 
[20, 21]. Here we describe the CNN architecture, the 
data on which it was trained, and three additional steps 
to improve model performance: spatial normalization, 
mitral annular plane correction, and iterative training 
segmentation refinement.

All image acquisition reflected standard international 
recommendations [11] and conventional CMR cine 
images were acquired of two-chamber (2C), four-cham-
ber (4C) views and a stack of short axis (SAx) slices.

Convolutional neural networks
Four CNNs were used in total: a SAx model (contain-
ing the blood pool only), a 2-chamber (2Ch) model and 
a 4-chamber (4Ch) model. Diastole was identified as the 
cardiac phase with largest blood volume and a further 
CNN, trained only in diastole, was used to segment the 
myocardium.

A U-net architecture [21] was adopted with dilatated 
(Atrous) convolutions and batch normalization [22]—a 
schematic of the network is shown in Fig. 2. The Adam 
algorithm was used to optimize each model using a 
learning rate of 10–4 with no decay and image augmenta-
tion (scaling, rotation, translation) was used to artificially 
increase the variability in the training set—the techni-
cal details of each model is listed in Additional file  1: 
Table S1.

Spatial normalisation
All images were normalized to a standard reference 
frame by: centering the SAx images to the point of inter-
section with the long axis (Lax) images (2Ch and 4Ch), 

rotating so the SAx and 2Ch intersection aligned to the 
y-axis (meaning the LV outflow tract was always orien-
tated in the same way), and scaling to an in-plane pixel 
size of 1 mm2—see Fig. 3.

Defining the base of the myocardium
Since the basal extent of the myocardium is difficult to 
determine from SAx images alone, we used the 2Ch and 
4Ch images to define the mitral annulus, below which 
any volume was discarded [23]. A plane was fitted to 
the mitral annulus by a least-squares fit to two points 
on each of the 2Ch and 4Ch at the intersection of the 
mitral annulus and myocardium. The geometric transfor-
mation needed to map each image slice into a common 
3-dimensional space can be calculated from information 
in the digital imaging and communications in medicine 
(DICOM) header and the volume formed by stacking the 
SAx contours can be trimmed by the mitral valve plane, 
discarding any volume below it (Fig. 1). While the point 
coordinates could be predicted directly by adding an 
additional fully connected layer to our CNN, we achieved 
more robust results using a U-net to predict a Gaussian 
weighted distance map, where each pixel represents the 
distance to the point as illustrated in Fig. 4 [24].

Training dataset
We developed a generalizable scanner-agnostic and dis-
ease-independent model using anonymized data from 
imaging datasets of 1,923 patients previously recruited 
via written informed consent to clinical studies, all with 
approval from the local research ethics committees and 
complying to the principles of the Helsinki declaration. 
Subjects were scanned with two field strengths (1.5 and 
3  T), three CMR manufacturers (Siemens Healthineers, 

Fig. 2  Structure of the Unet used for short axis image segmentation. The model takes a grayscale CMR image with dimension 192 × 192 and 
creates a segmentation mask of the same dimension with 3 channels (one channel for each of: LV blood pool (white), myocardium (gray) and 
background (black)). The Unet used for long axis segmentations were the same, but image sizes and final layer were different—see Additional file 1: 
Table S1 for full details
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Erlangen, Germany; Philips Healthcare, Best, the Neth-
erlands; General Electric Healthcare, Chicago, Illinois, 
USA), 10 scanner models, 13 institutions from three 
countries (see Fig.  5). Cohorts were selected to balance 
health, physiological adaptation (athleticism), diseases 
with hypertrophy (aortic stenosis, hypertension, car-
diac amyloidosis, Fabry disease, hypertrophic cardio-
myopathy) and dilatation (myocardial infarction, dilated 
cardiomyopathy).

Images were segmented by three clinical cardiology 
trainees (CL, RH, YY) and reviewed and adjusted by a 
single expert with > 15  years’ clinical experience (JCM). 
Clinician segmentation was performed on cvi42 software 
(version 5.3.6, Circle Cardiovascular Imaging, Calgary, 
Alberta, Canada) using the semi-automated threshold 
tool with the ‘smoothed contour’ option enabled and 
post-hoc freehand correction as needed—the choice of 
tool was informed by previous work showing this to be 

Fig. 3  Spatial normalisation. The geometric relationship between the SAx, 2Ch and 4Ch planes are known—the three planes are overlaid in 3D in 
the left image. Spatial normalisation of each image is performed by transformation to a normalised reference frame as shown in the right image. 
2Ch 2-chamber, 4Ch 4-chamber, SAx short-axis

Fig. 4  Mitral annular position encoding. The image on the left shows the lateral mitral annular point overlaid on the CMR image. The image on 
the right was created by measuring the distance to the mitral annular point from each pixel position and weighting with a Gaussian function; the 
position of the point is overload for illustration. The bottom image shows the CMR image and distance map overlaid. For clarity, only one of the two 
points is shown here. MV mitral valve
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most precise.[13] Segmentations followed standard con-
vention where trabeculae and papillary muscles were 
considered part of the blood pool.

Model optimization by refining training segmentations
Following model parameter optimization, an iterative 
approach was adopted for model refinement. At each 
iteration of the model, expert readers (JBA, JCM, RhHD) 
used custom-built tools to inspect model segmentation 
predictions. We found that anatomically implausible 
segmentations could be traced back to the original train-
ing data and amending the training segmentation could 
remove such errors in subsequent models. The basal slice 
was particularly difficult and multiple approaches were 
trialed. For the final segmentation approach for training, 
we annotated the entire basal slice and one additional 
atrial slice, allowing the mitral annular plane correction 
algorithm to precisely define slice inclusion/exclusion 
with respect to the ventricle—a departure from conven-
tional approaches [11].

LV metrics
The LV was segmented in each SAx image using volumes 
calculated from all SAx images in that cardiac phase. 
End-systole (the phase with smallest blood volume) 
and at end-diastole (largest volume) were identified and 
their volumes used to derive LV end diastolic volume 
(LVEDV), end systolic volume (LVESV), LVEF, and myo-
cardial mass (LVM).

Model evaluation
Machine learning model performance is often reported in 
terms of measurement accuracy (the closeness of a meas-
ure to its true value [25]) by measuring agreement (e.g. 
using the DICE coefficient) between model segmenta-
tions and those produced by a clinician(s). However, cli-
nician segmentation is subjective and variable, making it 
unsuitable for use as a truth standard [26]. Since no other 
suitable truth standard exists, we concentrate on meas-
urement precision (agreement of measures [25]), evalu-
ated on a scan-rescan dataset. Since high measurement 

Fig. 5  Composition of training data. List of countries, cities, institutions, scanner brand, scanner models and conditions (disease or healthy) used in 
the training dataset. AFD Anderson-Fabry Disease, AS  aortic stenosis, HCM  hypertrophic cardiomyopathy
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precision can be achieved with consistent but inaccurate 
segmentations, we also make a qualitative assessment of 
segmentation performance (as a surrogate for accuracy).

No images used in model evaluation had been included 
in the training data.

Measurement precision
Scan-rescan precision was measured using an independ-
ent dataset intended for benchmarking segmentations 
(we make these freely available at www.​thevo​lumes​resou​
rce.​com) obtained on 109 subjects who were scanned, 
then removed from the scanner before being scanned 
again. The dataset contains multiple pathologies (32 
myocardial infarctions, 17 LV hypertrophy, 17 cardio-
myopathy, 8 cardio-oncology patients, 5 with chronic 
kidney disease, 30 healthy subjects), scanned at two field 
strengths at five institutions, as previously described [13].

A benchmark for human precision was obtained from 
segmentations performed by clinicians. First, all scan 
and rescan studies were combined into a single pool 
and presented in a randomized order to two trainees 
(YY, CL, 1–2  years CMR experience) and one expert 
(JCM, > 15 years CMR experience) who segmented each 
one using cvi42 software (version 5.3.8, Circle Cardio-
vascular Imaging)—using the semi-automated threshold 
tool with freehand correction and the mitral valve plane 
correction option enabled [13]. A further benchmark was 
obtained from the fully automated deep learning tool 
from a commercial software package (cvi42, version 5.11, 
Circle Cardiovascular Imaging).

Segmentation performance
Segmentation quality was assessed by two observers (JA, 
JCM) who identified any anatomically incorrect segmen-
tations that affected ≥ 5% of overall cardiac volume. This 
allowed comparison of mis-segmentation rates between 
Machine, Human and cvi42.

Generalizability
In order to test the generalizability of the method to other 
patients, we also assessed the automated segmentations 
produced by our algorithm on an independent dataset of 
consecutive patients scanned as part of a clinical service 
at an independent center (University of Pittsburgh Medi-
cal Centre, Pittsburgh, Pennsylvania, USA) between June 
2010 and March 2016 [27] Scans were excluded if non-
standard cine imaging sequences were acquired, leaving 
a total of 1277 patients (55 ± 15 years, 58% males) with a 
range of (non-congenital) diseases—see Additional file 1: 
Table S2 for further details.

Pilot study for normal reference range calculation
A normative reference range depends on the method 
that was used to create it. As a pilot study, we calculated 
a sex- and age-stratified reference range for machine 
learning segmentations to serve as a benchmark for our 
patient cohorts. The values were obtained by applying 
the machine learning segmentation algorithm to CMR 
scans of 98 healthy subjects (no symptoms or history 
of cardiovascular disease or diabetes, normal electro-
cardiogram, blood pressure and CMR who underwent 
CMR (Avanto, 1.5 T, Siemens Healthineers).

Statistical analysis
Statistical analysis was performed in R (version 3.5.3; R 
Foundation for Statistical Computing, Vienna, Austria). 
All continuous variables are expressed as means (with 
95% confidence intervals in brackets) or medians (inter-
quartile range) if the data is not normally distributed.

The concordance correlation coefficient (CCC) was 
used to assess agreement between human and machine 
segmentations for all LV metrics [28]. Intra-observer 
re-read variability (between pairs of identical scans) 
and scan-rescan variability (two separate scans of the 
same patient) were quantified using the within-subject 
coefficient of variation (CoV), calculated by the root 
mean squared method, and using n = 10,000 boot-
strap samples to estimate standard errors and confi-
dence intervals [29–31]. Mean absolute differences 
and Bland–Altman coefficients were also calculated for 
completeness. Sample size required to detect a clinical 
change was derived from the standardized difference 
for each LV metric with a power of β = 0.9 at a signifi-
cance level of α = 0.05. The minimal detectable change 
between two scans was calculated by 1.96 x √2 × stand-
ard error of measurement (SEM).

Results
Performance
Human LV analysis took a median 13  min (interquar-
tile range: 9–19 min) per study. Machine analysis took 
20 s on a conventional workstation with NVIDIA GTX 
1080Ti graphical processing unit.

Machine mis-segmentations were identified in the 
combined dataset of 72 of 34,486 (1 in 479) images [9 
of 5058 in the Precision dataset and 63 of 29,428 in the 
Generalizability dataset]. Errors were seen in rare sce-
narios not encountered in training and in cases where 
contextual information assimilated by the human 
expert, was missed by the machine—examples include 
ventricular thrombus, artifact, effusions, poor image 
piloting, and unusual extracardiac findings (Fig.  6). 
There was also occasional over- or under-segmentation 

http://www.thevolumesresource.com
http://www.thevolumesresource.com
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of the basal slice, caused by a change in breath-hold 
position between short- and long-axis acquisition.

cvi42 had a mis-segmentation rate of 89 in 5,058 (1 in 
57) images on the Precision dataset, mostly because of 
missing contours, particularly at the base.

Measurement bias
The LV metrics (LVEDV, LVESV, LVEF, LVM) derived 
from human and machine segmentations were highly 
correlated on the test (precision) dataset with a CCC 
range of 0.94 to 0.95. Absolute measurement differences 
between human and machine methods on the preci-
sion dataset were (LVEDV −  12  mls; LVESV −  3  mls; 
LVEF − 2%, LVM + 9 g)—see Additional file 1: Table S3. 
Because of the discrepancy, an algorithm-specific refer-
ence range was calculated as described below.

Measurement precision
Human intra-observer re-read variability (Fig.  7; Addi-
tional file 1: Table S4), had coefficient of variation (CoV) 
of LVEDV 3.2%, LVESV 7.6%, stroke volume 6.1%, LVEF 
5.1%, LVM 3.9%. For machine, CoV were all 0% because 
the algorithm is deterministic. Scan-rescan CoV (Fig. 7) 
was significantly larger for human compared to machine 
across all parameters except for ESV, which was equiva-
lent (for example LVEF 6.0% vs 4.2%, LVM 4.8% vs 3.6%; 

both P < 0.05). The increased machine precision trans-
lates to a better minimal detectable change (LVEF 8.7% 
to 7.0%; LVM 19.2 g to 13.7 g) and a potential reduction 
in clinical trial sample size by 46% if LVEF was used as 
an endpoint (see Additional file 1: Table S5). cvi42 soft-
ware precision was significantly inferior to both human 
and machine for LV metrics (for example, LVEF 10.4%, 
LVM 8.8%; all p < 0.001 compared to both human and 
machine).

Pilot study to define a reference range
Of the 98 healthy subjects, 52% were male, with a mean 
age of 50 ± 14 (range 20–76  years). The mean values of 
machine-derived LV metrics were: LVEF 65% (95% con-
fidence interval 55–75%), LVEDV 145 ml, LVESV 51 ml, 
LVM 94  g. See Additional file  1: Table S6 for age- and 
sex-stratified mean values and confidence intervals.

Discussion
We present a fully automated method of CMR LV volu-
metric analysis and demonstrate that it has superior pre-
cision to a human expert. Widespread adoption has the 
potential to standardize global care, reduce the need for 
clinical expert time, and significantly reduce sample sizes 
for clinical trials.

Fig. 6  Example segmentations by machine learning algorithm. Top row: a pair of diastole images from the scan:rescan dataset that has been 
segmented by the automated algorithm. Note that the LV metrics are not exactly the same due to intrinsic variability in how slices are prescribed. 
Bottom left: example of an error (1 in 479 error rate) where laminar thrombus had been mis-identified as myocardium since this had not been ‘seen’ 
in the training data before. Bottom right: a mis-segmentation due to a pericardial effusion
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Automated CMR analysis has already demonstrated 
faster performance with non-inferiority to humans [13]. 
Here, we demonstrate a generalizable algorithm with bet-
ter-than-human precision with a substantial step-change 
that could impact both clinical and research work. Clini-
cally, improved imaging biomarker precision builds con-
fidence in quantitative analysis of cardiac structure and 
function and will help cascading clinical decisions that 
are based on cardiac measurement. For research, there is 
a potential reduction in required sample sizes, potentially 
accelerating therapeutic development. The automated 
method also permits retrospective analyses with con-
siderable power—for example re-analyzing a 200 patient 
CMR study would take 60  min and could unearth find-
ings previously masked by human analysis variability.

Machine errors were seen in circumstances not 
encountered in the training data, such as a laminar 
thrombus mimicking the LV wall, or a pericardial effu-
sion resembling LV blood (Fig.  6; Additional file  1: 
Table S7). This in part represents a limitation when train-
ing data is collected from consented research subjects 
who, by definition, must be well enough to give consent. 
However, it also highlights that humans consider contex-
tual information and use high-level executive function 
outside the scope of current AI systems. The method we 
present here has also has not been tested on patients with 
congenital heart disease and it is unlikely to generalize to 
such cases due to significant differences in structure and 
topology. This poses an interesting question about how 
to best model different diseases: do we create a separate 

model of each phenotype, or should they all be lumped 
together into a single model?

Sources of longitudinal variability in image-derived 
metrics can be grouped into three categories: variable 
image slice prescription by the radiographer, inconsistent 
analysis by the clinician, and physiological or pathologi-
cal changes. Our goal is to minimize the first two sources 
(errors caused by inconsistency) so that we can focus on 
true physiological (or pathological) variability, which is 
crucial for serial assessment in clinical cardiology (e.g. 
monitoring for signs of cardiotoxicity during chemo-
therapy) and in clinical trials. Here, we have shown how 
image analysis variability can be minimized, but in future 
work we will extend this to automate the image acquisi-
tion process using deep learning to prescribe consistent 
image planes.

The difference between scan-rescan coefficients of 
variation (Fig. 7) and the mean absolute difference (Addi-
tional file 1: Table S4) may look small but these translate 
to a significant difference for both research studies and 
clinical care. As an example, if we used machine segmen-
tations instead of human analysis in a clinical trial with 
an LVEF endpoint, we would need 46% fewer subjects to 
achieve the same statistical power. Minor differences in 
LV metric values also propagate in clinical care because 
normal values are treated as simple ‘cut-off’ values. Fur-
thermore, the reported values represent the mean and 
larger differences are seen at an individual level.

Clinical adoption of machine learning methods is slow 
due to challenges with data access, integrating computer 

Fig. 7  Machine and human precision evaluated on 109 subjects. Intra-observer reliability and scan-rescan repeatability, expressed as coefficient 
of variations (%) with 95% confidence intervals in brackets. Note that the intra-observer reproducibility is zero for all LV metrics. *Denotes statistical 
significance; ** denotes highly significant difference. EDV end diastolic volume, ESV end systolic volume, EF ejection fraction, LVM LV mass
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science and clinical domains, as well as validation, trans-
parency, ethical and regulatory concerns [32]. Here, 
we have demonstrated how machine learning can be 
applied to an important medical problem, cardiac volu-
metric analysis by CMR, and its performance measured 
using a clinically important metric—precision. Unlike the 
majority of previous approaches, we directly compared 
machine performance to a clinician on the same inde-
pendent data [19]. Such datasets could be a cornerstone 
of regulatory approval, where all new algorithms are sys-
temically and independently evaluated and benchmarked 
against existing approaches.

There are significant differences between norma-
tive reference ranges for cardiac structure and function 
reported in the literature, (for example [33, 34]) and even 
small changes can lead to big differences in the number 
of subjects beyond cut-off thresholds. Much of this vari-
ability could be due to differences in sample populations 
(e.g. age, sex, comorbidities), imaging techniques (e.g. 
gradient echo vs. balanced steady state free procession), 
and measurement convention (papillary muscles con-
sidered as part of the LV blood pool vs. as myocardium). 
Experts also have their own biases, but so do automated 
algorithms which is why we believe that is important to 
report method-specific reference range. We performed a 
pilot study to estimate a normal reference range, but the 
number of patients, particularly in older age groups, is 
small so we aim to refine this in future using larger sam-
ples, such as UK Biobank.

Limitations
Technical limitations of the algorithm include the 
method of co-registering the data from SAx, 2Ch and 
4Ch images in 3D, which assumes consistent breath hold 
at the time of each acquisition, which may not always be 
the case. We will investigate ways of compensating for 
breath hold inconsistencies and integration into true 3D 
volumes in future work.

Other limitations include the limited number of human 
observers from a single centre used to benchmark the 
Precision dataset. This took 210 h of manual segmenta-
tion, but we acknowledge that validation with more cli-
nicians from more centres is required before we can 
generalize the finding that the algorithm outperforms 
humans.

Conclusion
We present an automated, generalized (any scanner and 
disease) method of measuring cardiac structure and sys-
tolic function that—without any intervention or correc-
tion—outperforms human analysis for precision.
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rescan precision metrics between human, machine and cvi42. LVEDV: 
left ventricular end diastolic volume; LVESV: left ventricular end systolic 
volume; LVEF: left ventricular ejection fraction; LVM: left ventricular mass; 
LVSV: left ventricular troke Volume Table S5. Sample size calculation 
based on Precision dataset. sd = standardized difference. Table S6. Pilot 
Study for Normal reference range showing mean (95% confidence interval 
in bracket) for each LV metric for machine-derived CMR volumes from a 
set of 98 healthy subjects. The combined reference range is presented as 
well as sex- and age-stratified ranges. Table S7. Breakdown of segmenta-
tion error by type and location on the validation (precision) dataset, which 
contains a total of 5058 images.
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