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Abstract 

Background:  Cardiovascular magnetic resonance (CMR) is emerging as an important tool for cardiac allograft assess-
ment. Native T1 mapping may add value in identifying rejection and in assessing graft dysfunction and myocardial 
fibrosis burden. We hypothesized that CMR native T1 values and features of textural analysis of T1 maps would identify 
acute rejection, and in a secondary analysis, correlate with markers of graft dysfunction, and with fibrosis percentage 
from endomyocardial biopsy (EMB).

Methods:  Fifty cases with simultaneous EMB, right heart catheterization, and 1.5 T CMR with breath-held T1 mapping 
via modified Look-Locker inversion recovery (MOLLI) in 8 short-axis slices and subsequent quantification of mean and 
peak native T1 values, were performed on 24 pediatric subjects. A single mid-ventricular slice was used for image tex-
ture analysis using nine gray-level co-occurrence matrix features. Digital quantification of Masson trichrome stained 
EMB samples established degree of fibrosis. Markers of graft dysfunction, including serum brain natriuretic peptide 
levels and hemodynamic measurements from echocardiography, catheterization, and CMR were collated. Subjects 
were divided into three groups based on degree of rejection: acute rejection requiring new therapy, mild rejection 
requiring increased ongoing therapy, and no rejection with no change in treatment. Statistical analysis included 
student’s t-test and linear regression.

Results:  Peak and mean T1 values were significantly associated with acute rejection, with a monotonic trend 
observed with increased grade of rejection. Texture analysis demonstrated greater spatial heterogeneity in T1 values, 
as demonstrated by energy, entropy, and variance, in cases requiring treatment. Interestingly, 2 subjects who required 
increased therapy despite low grade EMB results had abnormal peak T1 values. Peak T1 values also correlated with 
increased BNP, right-sided filling pressures, and capillary wedge pressures. There was no difference in histopathologi-
cal fibrosis percentage among the 3 groups; histopathological fibrosis did not correlate with T1 values or markers of 
graft dysfunction.

Conclusion:  In pediatric heart transplant patients, native T1 values identify acute rejection requiring treatment and 
may identify graft dysfunction. CMR shows promise as an important tool for evaluation of cardiac grafts in children, 
with T1 imaging outperforming biopsy findings in the assessment of rejection.
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Introduction
Heart transplant remains a life-saving intervention for 
pediatric patients with advanced heart failure. Despite 
significant advancements in immunosuppressive therapy, 
cardiac allograft rejection remains an important cause 
of mortality and morbidity after transplantation [1, 2]. 
Allograft rejection and graft failure are often clinically 
insidious, yet early detection significantly improves out-
comes [3]. Identification of allograft rejection is complex; 
the current gold standard, direct pathologic evaluation 
of the myocardium via endomyocardial biopsy (EMB), 
frequently results in false negatives [4–6] due to random 
sampling of the accessible regions of the right ventricle 
[7]. Further, EMB requires an invasive procedure for tis-
sue procurement, which while generally safe, involves a 
risk of cardiac perforation, arrhythmia, effusion, and tri-
cuspid valve injury [5, 8, 9]. Other noninvasive methods 
of identifying rejection, including echocardiography [10, 
11], serum markers [12], and clinical signs and symptoms 
also carry limitations in detecting rejection but have been 
used for diagnosis of late graft dysfunction. Characteris-
tics of late graft dysfunction can be diagnosed by hemo-
dynamic measurements through echocardiography and 
cardiac catheterization [13, 14], and myocardial fibrosis 
noted on histological evaluation [15].

Cardiovascular magnetic resonance (CMR) offers a 
diagnostic advantage in detection of myocardial pathol-
ogy due to its ability to characterize the entire myocar-
dium for evidence of fibrosis or edema using quantitative 
T1 and T2 weighted techniques [16]. Native T1 values 
increase with processes that result in myocardial edema 
and fibrosis [17]. In adult heart transplant recipients, 
T1 and T2 mapping techniques have been shown to be 
more sensitive for the detection of acute allograft rejec-
tion than EMB, with excellent negative predictive capac-
ity [18–21].

T1 and T2 mapping techniques are complex pulse 
sequences which require systematic use and careful 
interpretation to yield accurate data, particularly in the 
pediatric population [22]. Typical spatial and temporal 
resolution values favor larger hearts with slower heart 
rates to minimize cardiac motion artifacts and provide 
enough time for T1 recovery [23], making the application 
of parametric mapping in pediatric populations chal-
lenging. However, the use of parametric mapping has 
been successfully demonstrated in other conditions in 
the pediatric population [22], including myocarditis [24], 
hypertrophic cardiomyopathy [25], Duchenne muscular 

dystrophy myocardial disease [26], iron deposition car-
diomyopathy [27], and anthracycline cardiotoxicity [28].

Another frequent challenge of using CMR parametric 
mapping is the variability of native T1 values, in particu-
lar between different field strengths [29], vendors, and 
individual scanners [16]. This is compounded by lack of 
normative pediatric T1 data to understand and identify 
disease states. For this reason, there is a consensus to 
use institutional reference ranges [16, 17], making com-
parability of measurements across patients and institu-
tions challenging [23]. We hypothesized that in addition 
to changes in native T1 value, T1 maps from patients 
with rejection would demonstrate changes in spatial 
variability of T1 voxel intensities. Texture analysis is a 
computational imaging analysis method that quantifies 
spatial heterogeneity using the relative intensity differ-
ences between neighboring voxels [30, 31], independent 
of the actual voxel intensities. Texture analysis thus over-
comes the lack of normative values available and has 
been demonstrated to have utility in other conditions, 
including myocarditis [32, 33], dilated cardiomyopathy 
[34], and hypertrophic cardiomyopathy [35].

There is a clear need for a non-invasive and more accu-
rate method of detecting acute allograft rejection and late 
graft dysfunction in pediatric heart transplant patients. 
The overall aim of this study was to determine the util-
ity of CMR native T1 values in (1) identifying acute graft 
rejection and (2) assessing graft dysfunction in pediat-
ric heart transplant patients. In secondary analysis, we 
aimed to compare textural features of parametric maps in 
cases of rejection versus those without rejection and to 
assess the relationship of native T1 mapping and histo-
logical myocardial fibrosis burden.

Methods
Clinical procedure
In this IRB-approved study, with consent/assent as 
appropriate, heart transplant patients referred for clin-
ically-indicated EMB were prospectively enrolled to 
undergo noncontrast-CMR at 1.5  T (MAGNETOM 
Aera, Siemens Healthineers, Erlangen, Germany) fol-
lowed by cardiac catheterization, with EMB in an adjoin-
ing biplane fluoroscopy suite. CMR included right heart 
catheterization, standard volumetry cines, phase contrast 
imaging, and breath-held native T1 mapping using Modi-
fied Look-Locker Inversion recovery (MOLLI) in eight 
short-axis slices. The following parameters were used 
for MOLLI T1 map acquisition: field of view 360  mm 
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× 307  mm, percent phase field of view 50–80% based 
on patient’s body habitus, and matrix size 1.4 × 1.4 mm. 
For patients with a RR interval > 700, echo time (TE) 
was 1.12 ms, repetition time (TR) was 2.80 ms, and flip 
angle of 35 degrees; for patients with RR interval < 700, 
TE was 1.06  ms, TR was 1.93  ms, and flip angle of 70 
degrees. Slice thickness and slice skip also varied based 
on patient’s size, ranging from 4–8  mm to 0–2  mm 
respectively. Measurements of volume, function, and car-
diac output were performed using standard offline soft-
ware (Medis Medical Imaging, AJ Leiden, Netherlands). 
Catheterization included collection of standard oximetry 
and hemodynamic data and EMB. If clinically indicated 
coronary angiography was performed according to sur-
veillance standard.

Clinical data were recorded, including patient demo-
graphics, transplant history, rejection history, and serum 
brain natriuretic peptide (BNP) levels. Hemodynamic 
measurements from echocardiography (left ventricu-
lar (LV) ejection fraction, mitral E/e’), catheterization 
(right atrial mean pressure, right ventricle (RV) systolic 
pressure, RV end diastolic pressure (RVEDP), main pul-
monary artery mean pressure, and pulmonary capillary 
wedge pressure), and CMR (LV and RV end diastolic vol-
ume) were also included. Serum BNP and hemodynamic 
measurements listed above were considered markers of 
graft dysfunction for the purpose of analysis.

Rejection analysis
Evidence of cellular rejection and antibody mediated 
rejection on EMB were graded based on the Inter-
national Society of Heart and Lung Transplantation 
(ISHLT) guidelines [36] by a surgical pathologist follow-
ing standard clinical practices. Clinically, rejection was 
defined based on treatment plan created by transplant 
team following the catheterization/EMB procedure. Of 
note, CMR T1 measurements and analyses did not affect 
treatment decision, as these are not reported with stand-
ard clinical data at our institution. Per our institutional 
protocol, those cases with Grade 2R or above acute cel-
lular rejection on biopsy received new rejection treat-
ment including intravenous steroids, thymoglobulin, 
immunoglobulins, etc.. Those cases with Grade 0R or 1R 
acute cellular rejection on biopsy but no hemodynamic 
compromise did not receive any treatment or modifica-
tion to immunosuppressive therapy. Cases with Grade 
0R or 1R rejection, with hemodynamic compromise, 
on echocardiogram, catheterization, or CMR, received 
treatment per transplant team using other data includ-
ing biopsy, history of rejection, clinical symptoms, and 
donor specific antibody (DSA) results, without impact 
of CMR T1 mapping data. Cases were divided into one 
of three outcome groups (A, B, C), based on their degree 

of rejection therapy recommended by their physicians, 
who were blinded to T1 mapping data. Group A included 
cases with no rejection and thus no changes made to 
their treatment regimen. Group B included cases with 
some evidence of rejection which required augmenta-
tion of maintenance treatment regimen or initiation of 
oral steroids under pulse dosing. Group C included cases 
with significant evidence of acute rejection, who received 
new rejection treatment such as intravenous (IV) or oral 
steroids at pulse dosing, thymoglobulin, or intravenous 
immunoglobulin (IVIG).

Parametric map analysis
Native T1 parametric maps were deidentified and ana-
lyzed using additional offline software (OsiriX, Bernex, 
Switzerland). The middle 6 slices were used (2 basal, 
2 mid, and 2 apical slices), to minimize through-plane 
motion artifacts associated with the most basal and api-
cal slices. Based on the American Heart Association 
17-segment model for myocardial segmentation [37], 16 
total regions of interest (ROIs) were generated, as dem-
onstrated in Fig.  1. Per lab standard [26], ROIs were 
traced in the septal and lateral walls only to avoid partial 
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Fig. 1  Location representation of regions of interest (ROIs) based on 
the American Heart Association 17-segment model for myocardial 
segmentation. [37] Shading indicates percentage of native T1 values 
in that segment that were abnormal (> 1050). In basal slices, ROIs 
were generated on two septal segments each (segment 2 and 3) and 
a lateral wall region (combined segments 5 and 6). In mid slices, ROIs 
were generated on two septal segments each (segment 8 and 9) and 
a lateral wall region (combined segments 11 and 12). In apical slices, 
ROIs were generated on the septal (segment 14) and lateral (segment 
16) segments. Of note, per lab standard, anterior and inferior 
segments were not analyzed to avoid partial volume effect
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volume effect with fat and lungs in the anterior wall and 
partial volume effect with the diaphragm and stomach in 
the inferior wall commonly found in the pediatric popu-
lation. ROIs were traced by a blinded reviewer using the 
“middle-third” technique to avoid artifacts and blood 
pool at the endocardial border, per lab standard [26, 38], 
yielding 16 segmental average regional voxel T1 values. 
Global mean and peak native T1 values were quantified 
using these 16 segmental T1 values.

A second reviewer traced ROIs on 20% of cases (10 
cases) to measure interobserver variability.

Given the myriad of factors contribution to local vari-
ation in T1 values, our institution created and maintains 
a local normal T1 database [16], which has both general 
norms (900–1050  ms) and normal values per body sur-
face area (BSA) quartile. Per internal local studies on 
healthy control patients, normal T1 values were consid-
ered 900–1050  ms, with values above 1050  ms consid-
ered to be abnormal (Additional file 1: Table S2).

Texture analysis
LV myocardium was semiautomatically segmented using 
Otsu thresholding from T1 maps with offline software 
(Seg3D, Scientific Computing and Imaging Institute, Salt 

Lake City, Utah, USA). Blood pool and epicardial myo-
cardium were carefully excluded. Image texture analysis 
(Fig. 2) was performed on a single mid-ventricular slice, 
using a previously-described texture toolbox [39] in 
MATLAB (The MathWorks Inc., Natick, Massachusetts, 
USA). Segmented maps were normalized to 256 inten-
sity levels. A 256 × 256  Gy-level co-occurrence matrix 
(GLCM) was created, quantifying the frequency with 
which a pixel of a given intensity neighbors a pixel of 
another given pixel intensity. The GLCM is constructed 
such that each entry (i, j) in the GLCM quantifies the 
number of times that a pixel of intensity i neighbors a 
pixel of intensity j. An image with more homogeneous 
pixel intensity is thus more diagonally dominant than one 
with pixel heterogeneity. To quantify image heterogene-
ity, nine GLCM-based texture features were computed 
for each slice as previously described: [30, 40–42] energy, 
contrast, entropy, homogeneity, correlation, sum average, 
variance, dissimilarity, and autocorrelation (Additional 
file 1: Table S1).

EMB fibrosis percentage analysis
EMB specimens underwent staining with Masson’s 
trichrome following a standard laboratory staining 

Fig. 2  Demonstrated is the clinical treatment algorithm at our institution. Patients undergo transthoracic echocardiogram, right heart 
catheterization, and endomyocardial biopsy at each surveillance encounter. Coronary angiography is performed if indicated. Of note, the 50 cases 
included this study also underwent CMR per research protocol and right heart catheterization was performed under CMR guidance
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protocol. Whole slide scanning was performed using Tis-
sue Scope (Huron Technologies, Ontario, Canada). Using 
ImageScope (Aperio, Vista, California, USA), endocardial 
collagen and artifacts were manually excluded. A pixel 
counting algorithm was developed by setting a colori-
metric threshold specific to blue stained collagen. Using 
this algorithm, percentage tissue fibrosis was calculated 
per biopsy. Surgical pathologists served as expert readers, 
with involvement in the creation and tuning of the per-
centage fibrosis tool.

Statistical analysis
Interclass correlation coefficient was used to verify inter-
observer variability. Student’s t-test was performed on 
native T1 values and parametric map texture features of 
cases with and without rejection, as defined by clinical 
rejection (Group A vs Groups B + C above) and by biopsy 
grade (Grade 0R vs Grade 1R or greater); ANOVA analy-
sis was also performed across the three treatment groups. 
A receiver operating characteristic curve was created for 
mean T1 values, peak T1 values, and significant texture 
analysis features. Pearson correlation was performed on 
T1 mean and peak values against markers of graft dys-
function, which included serum BNP and hemodynamic 
data from echocardiography, catheterization, and CMR. 
All statistical analyses were performed using GraphPad 

Prism version 9.0.0 for Windows (GraphPad Software, 
San Diego, California, USA).

Results
Patient cohort
Twenty-four pediatric patients in 50 cases 
(12.2 ± 4.6  years, graft age 5.3 ± 4.1  years, 36% female) 
underwent study procedures for surveillance (70%), sus-
pected rejection (4%), and follow-up of prior rejection 
(26%). Thirty-seven cases (74%) were in Group A (no 
rejection, no therapy changes), 6 cases (12%) in Group 
B (mild rejection, minor therapy changes), and 7 cases 
(14%) in Group C (rejection present, major therapy 
changes). For analysis purposes, groups B + C repre-
sented those cases with clinical rejection. There was no 
difference in mean age, graft age, or graft ischemia time 
between Group A and Group B + C (Table 1). LV ejection 
fraction on echocardiogram was lower in Group B + C 
than Group A (60.8 ± 3.4%vs 64.3 ± 5.2%, p = 0.009), 
though both were normal (Table  2). A higher percent-
age of cases in Group B + C, compared to Group A, were 
positive for DSAs (53.8% vs 20%, p = 0.051).

Similarly, a higher percentage of cases in Group B + C 
had biopsies with cellular rejection grade > 0R compared 
to Group A (84.6% vs 16.2%, p = 0.001).

Two patients in Group B + C who had Grade 0R 
biopsies and abnormal hemodynamics, prompted 

Table 1  Patient cohort: demographics

NT-Pro BNP N-terminal pro-hormone brain natriuretic peptide, LV left ventricular, RV right ventricular, RVEDP right ventricular end-diastolic pressure

Demographic All cases Group A Groups B and C P value

All cases n = 50 n = 37 (74%) n = 13 (26%)

Male 64.0% 67.6% 53.8% 0.412

White 77.3% 75.8% 81.8% 0.915

Hispanic 32.0% 24.3% 53.8% 0.083

Mean age (years) 12.2 ± 4.6 11.9 ± 4.8 13.3 ± 4.2 0.326

Mean graft age (years) 5.3 ± 4.1 5.4 ± 3.7 5.1 ± 5.2 0.882

Graft ischemia time (minutes) 228 ± 44 225 ± 43 236 ± 49 0.531

Coronary vasculopathy 0% 0% 0% 1.000

Clinical concerns for rejection 4.0% 2.7% 7.7% 0.549

Indication for catheterization: surveillance 70% 75.7% 53.8% 0.191

Number of prior rejection episodes 6.3 ± 6.1 5.8 ± 6.1 7.8 ± 6.1 0.315

NT-pro BNP Level (pg/mL) 787 ± 1477 332 ± 530 1663 ± 2549 0.099

Positive for donor-specific antibodies 30.2% 20.0% 53.8% 0.051

Echo LV ejection fraction (%) 63.4 ± 5.0 64.3 ± 5.2 60.8 ± 3.4 0.009

Cath RA mean pressure (mmHg) 10 ± 4 9 ± 3 12 ± 5 0.096

Cath RV systolic (mmHg) 28 ± 5 28 ± 5 28 ± 5 0.954

Cath RVEDP (mmHg) 11 ± 4 11 ± 4 13 ± 6 0.137

Cath average RPCW/LPCW (mmHg) 12 ± 5 11 ± 3 15 ± 6 0.071

Biopsy grade > 0R 34% 16.2% 84.6% 0.001

Biopsy grade > 1R 4% 0% 15.4% 0.014
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modification of immunosuppressive therapy (Table 2). Of 
the six cases in Group A with Grade 1R biopsies, all had 
normal hemodynamics on echocardiogram, catheteriza-
tion, and CMR; further all six cases were receiving more 
frequent surveillance due to history of rejection and con-
tinued to show improvement during these cases. There 
were no cases of antibody mediated rejection among the 
50 cases.

T1 parametric map analysis
Intraclass correlation coefficient of 20% of cases, with 
regions of interest traced by 2 reviewers, was 0.829 for 
global mean T1 and 0.830 for peak T1.

T1 correlation with clinical rejection
A monotonic, increasing trend was noted in both mean 
and peak T1 values, with increasing degree of rejection 
(Figs.  3, 4), with peak T1 values in the abnormal range 
(T1 values greater than 1050) for Group B and C. Area 
under the curve (AUC) of receiver operating character-
istic curve of mean T1 values was 0.746 (p = 0.007) and 
of peak T1 values was 0.730 (p = 0.012) (Fig. 5). Notably, 
ROC analysis demonstrated 100% sensitivity at peak T1 
values > 1050 ms, which is the cutoff of normal vs abnor-
mal T1 values at our institution based on internal studies.

Interestingly, T1 values did not differ between cases 
with Grade 0R and those with Grade 1R or higher cel-
lular rejection [mean T1: 1018 ± 28 ms vs 1029 ± 45 ms 
respectively (p = 0.388); peak T1: 1067 ± 44  ms vs 

1075 ± 44  ms respectively (p = 0.547)]. Of note, 2 of 13 
cases (15%) in group B + C had biopsies with grade 0R 
rejection, were treated for clinical rejection, and both 
were found to have elevated peak T1 values.

T1 correlation with graft function
Mean T1 values demonstrated moderate correlation 
with BNP (r = 0.59) and mean pulmonary artery pressure 
(r = 0.33). Peak T1 values demonstrated moderate corre-
lation with BNP (r = 0.52), right atrial pressure (r = 0.40), 
mean pulmonary artery pressure (r = 0.46), RVEDP 
(r = 0.36), and average pulmonary capillary wedge pres-
sure (r = 0.33). T1 values did not correlate with other 
hemodynamic markers (Table 3). When cases with clini-
cal rejection were removed, leaving only those cases with 

Table 2  Indication for treatment

DSA donor specific antibodies, IV intravenous, IVIG intravenous immunoglobulin

Group Biopsy grade Treatment received Reason for treatment

B Grade 1R Tacrolimus goal increased Histological: Persistent 1R biopsy × 3

B Grade 1R Tacrolimus goal increased Hemodynamics: systolic dysfunction (mildly decreased left ventricular function)

B Grade 0 Low dose steroids Hemodynamics: diastolic dysfunction (elevated right end diastolic pressure and capillary 
wedge pressure); new positive DSA

B Grade 1R Tacrolimus goal increased Hemodynamics: systolic dysfunction (mildly decreased left ventricular function)

B Grade 1R Tacrolimus goal increased Hemodynamics: diastolic dysfunction (elevated pulmonary wedge pressures)

B Grade 1R Oral steroids (not pulse dose) Hemodynamics: diastolic dysfunction (elevated right end diastolic pressure and pulmonary 
capillary wedge pressure)

B Grade 0 MMF dose increased Hemodynamics: systolic dysfunction (mildly decreased biventricular function)

C Grade 1R Oral pulse steroids Hemodynamics: diastolic dysfunction (elevated right end diastolic pressures and capillary 
wedge pressure)

C Grade 1R IVIG and rituximab Hemodynamics: systolic dysfunction (decreased biventricular function, requiring milrinone)

C Grade 1R IV pulse steroids Hemodynamics: diastolic dysfunction (elevated right end diastolic pressures and pulmonary 
capillary wedge pressure) and decreased cardiac index (requiring epinephrine)

C Grade 1R IV pulse steroids, IVIG, rituximab Hemodynamics: diastolic dysfunction (elevated right end diastolic pressure and capillary 
wedge pressure); Worsening DSA

C Grade 2R IV pulse steroids, thymoglobulin Histological and hemodynamics: diastolic dysfunction (elevated right end diastolic pres-
sures and right atrial pressure)

C Grade 2R IV pulse steroids, thymoglobulin Histological

Fig. 3  Representation of texture analysis of two example images 
that have the same pixel intensity mean, standard deviation, and 
distribution but differ in texture features. Image A has higher energy 
with lower entropy and variance than Image B 
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possible graft dysfunction, peak T1 correlated with BNP 
moderately (r = 0.54) but with no other markers.

T1 correlation with fibrosis percentage
Fibrosis percentage, calculated from random EMB of 
the RV, did not demonstrate a difference between cases 
of clinical rejection (Group B + C), versus cases without 
rejection (Group A) (8.2% ± 3.1 vs 7.4% ± 5.2, p = 0.703). 

Fibrosis percentage did not correlate with hemodynamic 
markers listed above or with mean or peak T1 values.

Native T1 texture analysis
Image texture analysis demonstrated that mid-ventricu-
lar short axis slices from Group A differed from groups B 
and C in three of nine texture features computed. Energy, 
a measure of image homogeneity, was higher in Group 
A than Groups B + C (p = 0.033). Entropy and vari-
ance, which reflect randomness and heterogeneity, were 
higher in Groups B + C than in Group A (p = 0.008 and 
p = 0.001 respectively). ROC analysis of these texture fea-
tures demonstrated AUC of 0.750 (p = 0.016) for energy, 
0.779 (p = 0.007) for entropy, and 0.831 (p = 0.002) for 
variance (Fig.  6). Other texture features did not differ 
between the groups.

Discussion
This prospective study demonstrates that mean and peak 
native T1 values correlate with both degree of clinical 
rejection and graft dysfunction in pediatric heart trans-
plant patients. Further, no correlation between native T1 
values and biopsy findings was demonstrated, indicating 
that native T1 mapping holds promise to identify clini-
cally important changes in the heart transplant popula-
tion, possibly outperforming random EMB of the RV. 
CMR is emerging as a useful tool for rejection screening 

Fig. 4  ANOVA analysis between three groups of global mean T1 and peak T1 values yielded p value of 0.0005 and 0.033 respectively. T-test analysis 
between group A (no change in treatment) versus combined groups B (maintenance treatment augmentation) and C (new treatment initiated) of 
global mean T1 and peak T2 values yielded pvalue of 0.007 and 0.016 respectively

Fig. 5  Receive Operative Characteristics Curve demonstrating 
sensitivity and specificity of mean and peak T1 values between 
groups with and without clinical rejection requiring treatment. AUC 
for mean T1 values was 0.746 (p = 0.007) and for peak T1 values was 
0.730 (p = 0.012)
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in pediatric transplant patients, particularly when biopsy 
negative clinical rejection is present. In addition, tex-
ture analysis of parametric T1 maps identified additional 
promising trends for detection of rejection using imag-
ing heterogeneity. Similar utility of native T1 values has 
been noted in adult studies, which demonstrated T1 and 
T2 mapping as useful tools for detecting rejection and 
therefore reducing the need for invasive EMB. Specifi-
cally, Imran et al. demonstrated an excellent negative pre-
dictive value of T1 mapping for cardiac allograft rejection 
[20]. Similarly, Vermes et  al., Dolan et  al., and Usman 
et  al., have demonstrated higher T2 levels and higher 
extracellular volume fraction (ECV) in patients with 

acute rejection [18, 19, 43]. Pediatric studies have noted 
higher native T1 values in all pediatric heart transplant 
patients compared to controls without transplants [44] 
and higher native T2 values in cases of allograft rejec-
tion [38]. However, in other studies in which rejection 
was defined solely by biopsy grade, no difference in T1 
values was demonstrated [45]. Using a larger population 
and whole-heart imaging, we have demonstrated a dif-
ference in T1 values between cases of rejection and cases 
without rejection, when rejection is defined clinically by 
necessity of treatment rather than exclusively by biopsy 
grade. Further, due to significant inter-center variability 
in the frequency of EMB for rejection surveillance, prior 
studies have investigated the yield of EMB and its impact 
on outcomes in the pediatric population [46, 47]. Stud-
ies investigating frequency of EMB both in the first year 
post-transplantation [47] when rejection risk is highest as 
well as long-term routine surveillance [46], demonstrated 
similar outcomes between high intensity and low inten-
sity protocols. Adult studies have supported discontinu-
ing routine EMB for long-term surveillance [48, 49].

Though texture analysis has been demonstrated in 
other pediatric conditions such as myocarditis [32, 33] 
and cardiomyopathies [34, 35], it has not previously been 
applied in pediatric heart transplant population and we 
therefore sought to do so. Texture analysis allows for the 
evaluation of heterogeneity in relative voxel intensities 
rather than using absolute voxel intensities [30, 31], offer-
ing the advantage of overcoming lack of normal T1 values 
between institutions given differences in field strengths, 
vendors, and individual scanners [16].

Diastolic dysfunction impacts prognosis of various eti-
ologies of chronic heart disease [50], including graft fail-
ure [51]. Several studies have demonstrated a relationship 

Table 3  Correlation of native T1 values and markers of graft dysfunction

LVEDV left ventricular end-diastolic volume, RA right atrial, RV right ventricular, RVEDP right ventricular end-diastolic pressure, RVEDV right ventricular end-diastolic 
volume

*Significant p-value

Marker Coefficient values (r)

vs Mean T1 p-value vs Peak T1 p-value

BNP 0.59* < 0.0001 0.52* < 0.001

Left ventricular ejection fraction − 0.20 0.186 − 0.33* 0.024

Average mitral E/e’ − 0.15 0.334 − 0.05 0.755

RA mean pressure 0.23 0.138 0.40* 0.008

RV systolic pressure − 0.04 0.810 0.08 0.603

RVEDP 0.18 0.239 0.36* 0.017

Main pulmonary artery mean pressure 0.33* 0.043 0.46* 0.005

Avg pulmonary capillary wedge pressure 0.24 0.125 0.33* 0.034

LVEDV − 0.08 0.584 − 0.22 0.130

RVEDV − 0.11 0.466 − 0.21 0.151

Fig. 6  Receive Operative Characteristics Curve demonstrating 
sensitivity and specificity of 3 textural features noted to show 
significant differences between groups with and without clinical 
rejection requiring treatment. Noted is an AUC of 0.750 (p = 0.016) 
for energy, 0.779 (p = 0.007) for entropy, and 0.831 (p = 0.002) for 
variance
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between diastolic dysfunction and myocardial fibrosis as 
measured by histological analysis [15, 51] and late post-
gadolinium myocardial enhancement CMR [50]. In our 
study, random EMB fibrosis percentage did not correlate 
with T1 values or with markers of graft dysfunction. Fur-
ther, fibrosis analysis of random EMB also did not differ 
between cases of clinical rejection. It is unclear if this 
reflects a limitation in the ability of T1 values to assess 
for myocardial fibrosis burden; however, it is more likely 
that fibrosis percentage measurements from randomly 
sampled EMB tissue samples do not accurately reflect 
whole heart myocardial fibrosis burden. Non-invasive 
markers, such as BNP and echocardiography mitral E/e’, 
have also been shown to correlate with RVEDP and pul-
monary capillary wedge pressure [52], markers of graft 
dysfunction. Though native T1 values showed moderate 
correlation with hemodynamic markers and BNP when 
patients in acute clinical rejection were included, this 
correlation was not found when looking only at patients 
without rejection. Perhaps, native T1 values, while show-
ing promise in identifying clinical rejection and in assess-
ing graft dysfunction in patients with rejection, may be 
limited in their ability to assess for more chronic graft 
changes that occur, including those mediated by fibrosis.

Limitations
There are limitations to this work; this is a single center 
study including a relatively small cohort which includes 
longitudinal, repeat encounters. We recognize that 
though this is a prospective study, the definition of clini-
cal rejection is retrospectively based on decision to treat. 
However, these treatment groups are in line with the clin-
ical treatment algorithm at our institution and therefore 
we find are a reliable outcome measure to compare. Also 
of note is that only septal and lateral segments were used 
for T1 value measurements. Given the nature of T1 map-
ping, we preferred to analyze only highly reliable data at 
the cost of excluding certain segments. In the pediatric 
population, particularly with patients as small as 15  kg, 
the anterior and inferior segments are subject to partial 
volume effect from epicardial fat and lungs for anterior 
segments and diaphragm and stomach for inferior seg-
ments, leading to unreliable data. Therefore, these seg-
ments were not included in the analysis, as is consistent 
with lab standards [26]. It is also important to note that 
very few patients underwent this procedure due to clini-
cal concern for rejection, but rather for screening. Fur-
ther, screening protocols and treatment protocols differ 
between institutions as standardized guidelines do not 
exist; therefore, further investigation at a multi-institu-
tional level is required.

Despite these limitations, we find it promising that 
CMR serves as a noninvasive screening tool during 

surveillance encounters and may be used to identify those 
patients that may be at higher risk of rejection and there-
fore require further evaluation. Transplant rejection sur-
veillance remains a multi-faceted approach, including 
assessment of clinical presentation, echocardiography, 
catheterization hemodynamics, and serum markers. Our 
team sought to demonstrate the possibility of a syner-
gistic value of a combined CMR and EMB protocol for 
evaluating patients. In our population, two patients had 
Grade 0R biopsies but required treatment due to abnor-
mal hemodynamics; these same patients demonstrated 
peak T1 values > 1050  ms, considered abnormal in per 
institutional normal values, further emphasizing the util-
ity of CMR. ROC analysis demonstrates 100% sensitivity 
at peak T1 values > 1050 ms, demonstrating the possibility 
of a model in which patients requiring transplant rejec-
tion surveillance undergo CMR including parametric 
mapping, right heart catheterization, and hemodynamic 
measurements as initial screening. For those patients 
with abnormal findings, EMB would be performed and 
also inform treatment decision. In our analysis, if this 
model were used, all patients who required treatment 
would have underwent EMB and the appropriate treat-
ment. Of the 37 patients who did not require treatment, 
15 patients would have been saved from invasive EMB. 
Further, at our institution where CMR guided right heart 
catheterization is available and routinely performed for 
hemodynamic data, these patients are exposed to radia-
tion only during coronary angiography, typically only 
performed at annual surveillance encounters. CMR, with 
its ability to perform radiation free evaluations that allow 
for hemodynamic assessment, particularly with the use 
of CMR guided right heart catheterization, and for entire 
myocardium assessment for fibrosis and edema, may be 
a promising tool in the pediatric heart transplant popu-
lation. Further investigation is needed in the other ways 
in which CMR may serve as a useful tool in transplant 
screening, including the potential for guiding EMB. Pre-
liminary work completed by our group shows parametric 
mapping patterns of T1/T2 elevations, or hotspots [53], 
in myocardial diseases such as rejection, reinforcing that 
these pathological changes are not uniform in nature. 
This has been suspected in the past given the false nega-
tive rate of random EMB [4–6]. Evaluation of these hot-
spots using guided EMB may provide further insight.

Conclusion
CMR native T1 parametric mapping demonstrates util-
ity in identifying rejection and assessing for graft dys-
function in pediatric heart transplant patients, possibly 
beyond random endomyocardial biopsy. Further work 
is needed to determine how CMR can best fit into the 
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current clinical multi-faceted approach to transplant 
rejection.
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