REVIEW

Open Access

2021–2022 state of our JCMR

Warren J. Manning^{*}

Abstract

In 2021, there were 136 articles published in the Journal of Cardiovascular Magnetic Resonance (JCMR), including 122 original research papers, six reviews, four technical notes, one Society for Cardiovascular Magnetic Resonance (SCMR) guideline, one SCMR position paper, one study protocol, and one obituary (Nathaniel Reichek). The volume was up 53% from 2020 (n = 89) with a corresponding 21% decrease in manuscript submissions from 435 to 345. This led to an increase in the acceptance rate from 24 to 32%. The quality of the submissions continues to be high. The 2021 JCMR Impact Factor (which is released in June 2022) markedly increased from 5.41 to 6.90 placing us in the top quartile of Society and cardiac imaging journals. Our 5 year impact factor similarly increased from 6.52 to 7.25. Fifteen years ago, the JCMR was at the forefront of medical and medical society journal migration to the Open-Access format. The Open-Access system has dramatically increased the availability and JCMR citation. Full-text article requests in 2021 approached 1.5 M!. As I have mentioned, it takes a village to run a journal. JCMR is very fortunate to have a group of very dedicated Associate Editors, Guest Editors, Journal Club Editors, and Reviewers. I thank each of them for their efforts to ensure that the review process occurs in a timely and responsible manner. These efforts have allowed the JCMR to continue as the premier journal of our field. My role, and the entire editorial process would not be possible without the ongoing high dedication and efforts of our managing editor, Jennifer Rodriguez. Her premier organizational skills have allowed for streamlining of the review process and marked improvement in our time-to-decision (see later). As I conclude my 6th and final year as your editor-in-chief, I thank you for entrusting me with the JCMR editorship and appreciate the time I have had at the helm. I am very confident that our Journal will reach new heights under the stewardship of Dr. Tim Leiner, currently at the Mayo Clinic with a seamless transition occurring as I write this in late November. I hope that you will continue to send your very best, high quality CMR manuscripts to JCMR, and that our readers will continue to look to JCMR for the very best/state-of-the-art CMR publications.

Background

The *JCMR* is the official publication of the Society for Cardiovascular Magnetic Resonance (SCMR). In 2021, the *JCMR* published 136 articles published in the *Journal of Cardiovascular Magnetic Resonance (JCMR)*, including 122 original research papers, six reviews, four technical notes, one Society for Cardiovascular Magnetic Resonance (SCMR) guideline, one SCMR position paper, one study protocol, and one obituary (Nathaniel Reichek). The 2021 publication volume was up 53%

*Correspondence: wmanning@bidmc.harvard.edu

from 2020 (n=89) with a corresponding 21% decrease in manuscript submissions from 435 to 345. This led to an increase in the acceptance rate from 24 to 32% (the slight mathematical difference in acceptance/submissions is related to submission year and publication year). As might be expected, COVID-19 publications [1–8] and COVID-19 vaccination publications (8) were plentiful, with 8 published in 2021.

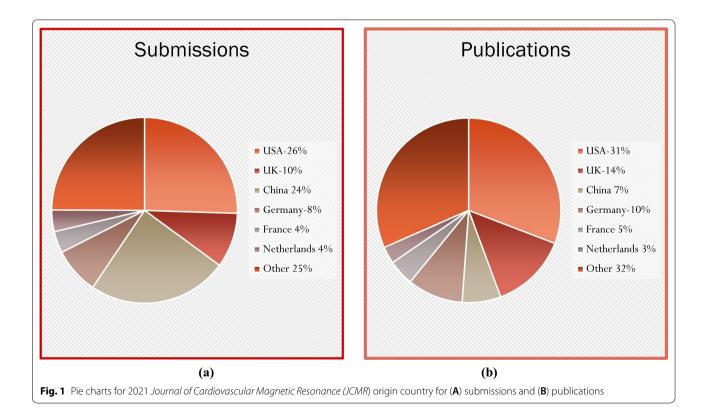
In July 2018, the article processing charge (APC) structure changed with SCMR members who are the submitting author paying an APC of only \$500, presenting an 82% discount to the full \$2680 APC. Reduced APC fees are also available to those from BMC membership institutions, submitting authors from lower income countries, and for those who request a waiver due to financial

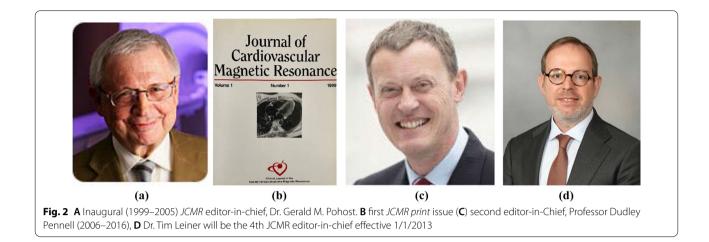
© The Author(s) 2022. **Open Access** This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.gr/jublicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Departments of Medicine (Cardiovascular Division) and Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School and JCMR Editorial Office, Boston, MA 02215, USA

hardship. APCs are waived for invited reviews and for Society publications.

As for 2020, in 2021, the United States (26%) and China (24%) were the source of 50% of all *JCMR* publications followed by the United Kingdom (10% and Germany (8%). The top three countries for publications were the United States (31%), United Kingdom (14%) and Germany (10%) (Fig. 1).


Impact factor


Though only one of many journal metrics and not a consideration in our review process, the Impact Factor calculated by Clarivate Analytics is nonetheless a wellrecognized metric with which many readers are familiar and is a metric often considered by both authors and readers for submitting and reading manuscripts. I am pleased to report that the 2021 JCMR Impact Factor (which was released in June 2022 and is based on manuscripts published in 2019 (n=430) and 2020 (n=633)that were cited in 2021) increased from 5.41 to 6.90!. This impact factor means that the JCMR papers published in 2019 and 2020 were cited on average 6.90 times in 2021. This puts JCMR well positioned in the top quartile (34/142-previously 37/142) of journals in the broad categories of "Cardiac and Cardiovascular Systems" and the top quintile (21/133-previously 20/133) of "Radiology, Nuclear Medicine and Medical Imaging." Our 2021 5 year impact factor similarly increased from 6.52 to 7.25. The 2022 *JCMR* impact factor will be released in June 2023.

Perhaps more important than the Impact Factor is the frequency that JCMR articles are accessed. Our openaccess format allows for much greater visibility for our authors with the 2021 JCMR annual digital downloads now approaching 1,500,000!!-a threshold not achievable with a subscription/print publication of a relatively small Society journal. Open-access has "leveled the playing field" so that an electronic search allows JCMR manuscripts to rise to awareness and to then be downloaded without cost. This is a great benefit to our readers, to the greater scientific community, and to our authors. Data analytics provided by our publisher, BMC, indicate that the vast majority (72%) of on line manuscript searches are identified from a Google, 9% directly from the JCMR web site, 4% from Pubmed. The largest number of searches are from Europe (38%) followed by the United States (28%).

JCMR editor-in-chief leadership

Dr. Gerald Pohost (Fig. 2) from the University of Alabama at Birmingham and University of Southern California, Los Angeles, CA, USA was the *JCMR* inaugural editor-in-chief (1999). During his tenure, the *JCMR* was published in print format by Marcel Dekker, Inc (Fig. 2). In 2007, he was succeeded by Professor Dudley Pennell

(Fig. 2) of the Royal Brompton Hospital, London, England. Since December 2016, the *JCMR* editorial office has been located at the Beth Israel Deaconess Medical Center, Boston, MA, USA under my leadership. My 6 year term will end at the end on December 31, 2022. We are well underway for an organized transition to the 4th JCMR Editor-in-Chief, Dr. Tim Leiner, currently at the Mayo Clinic, Rochester, Minnesota, USA. Throughout this transition, you can continue to contact the *JCMR* editor-in-chief by using the same email: jcmreditor@scmr.org.

2021 JCMR editorial and management team

The *JCMR* Associate Editors (Table 1) reflect the international and diverse spectrum of the CMR and SCMR field. Dr. Long Ngo (USA) continues to serve as our statistical editor. Drs. Juan Lopez-Mattei (USA) and Purvi Parwani (USA) are busy every week disseminating *JCMR* news as our Social Media/Twitter editors. Tim has elected to keep most of the current team in place and will be adding several Associate Editors. Stay tuned!

Jennifer Rodriguez (jcmroffice@scmr.org) has been our managing editor since January 2021 (Fig. 3). Jennifer has made tremendous progress in keeping me

Associate editors	
Rene Botnar	Pontificia Universidad Católica, Chile/King's College London, UK
John Greenwood	University of Leeds, UK
Yuchi Han	Ohio State University, USA
Dara Kraichman	Johns Hopkins University School of Medicine, USA
Robert Lederman	National Institutes of Heart, Lung, and Blood Institute, USA
Tim Leiner	Mayo Clinic, USA
Reza Nezafat	Beth Israel Deaconess Medical Center, USA
Amit Patel	University of Virginia, USA
Joshua Robinson	Northwestern University, USA
Connie Tsao	Beth Israel Deaconess Medical Center, USA
Statistical editor	
Long Ngo	Beth Israel Deaconess Medical Center, USA
Journal Club Editors	
Scott Flamm	Cleveland Clinic, USA
Raymond Kwong	Brigham and Women's Hospital, USA
Matthias Stuber	University of Lausanne, Switzerland
Social Media Editors	
Juan Lopez-Mattei	Lee Health, USA
Purvi Parwani	Loma Linda University Health, USA

Table 1 JCMR associate editors, statistical editor, journal club editors, and social media editors

and the entire manuscript review process organized and on schedule. As a result, we have seen a marked decrease in our time to first decision time from a mean of 60 days in 2019 and 2020 to \leq 40 days since she took the managing editor position in January 2021. I hope our authors have felt this tangible difference. We are fortunate that Jennifer has agreed to continue in her *JCMR* managing editorial role with Dr. Leiner.

2021 JCMR Journal Club—now with CME!

A highlight of 2021 was the second season of our JCMR Journal. These monthly one-hour webinars are held on the 2nd Wednesday of the month at 11am ET. A link for the monthly registration is on the JCMR (https://jcmronline.biomedcentral.com/) and SCMR (www.scmr.org) websites. For three years, these monthly JCMR Journal Clubs have been moderated by one of our three Journal Club Editors, Drs. Scott Flamm (clinical), Raymond Kwong (clinical) and Matthias Stuber (non-clinical) (Fig. 4). On a rotating basis, each editor choses a manuscript that was recently published in JCMR. After a brief Journal Club Editor introduction of the topic, the presenting author has a 25-30 min presentation followed by a spirited 30 min discussion. We continue to offer continuing medical education (CME) for reading the manuscript and for July-December 2022 started providing CME for Journal Club attendance. CME for our JCMR Journal Club is another free benefit for SMCR members. Please join your colleagues every month for an informative presentation and discussion. Don't worry if you missed one. Recordings of the monthly webinars and a CME journal link are provided on the JCMR web site. Check them out! While you can receive CME for reading the manuscript at any time, you can only receive CME for journal club attendance when participating in the live event.

Like other JCMR activities, the *JCMR* Journal Club is a village effort. In addition to our 3 talented Journal Club editors, I very much appreciate the strong administrative assistance of Sarah Mania (Fig. 4) for the past 18 months. Sarah was responsible for coordinating

18 months. Sarah was re JCM JCM JCM JCM Mathias Stuber Status Scott Flamm Scott Flam Scott Flam</td

JCMR Journal Club Managing Editor

Sarah Mania

Fig. 4 2020–2022 JCMR Journal Club editors: Drs. Raymond Kwong, Scott Flamm, Matthias Stuber. Ms. Sarah Mania has been the JCMR Journal Club Managing Editor since mid-2021

registration, the speaker presentations, CME, Zoom operations and recording, and subsequent posting of the monthly *JCMR* Journal Club recording on the SCMR website. The 2021 JCMR Journal Club selections were on a wide variety of topics (Table 2).

Manuscript review process, omissions, and suggestions

I reviewed the manuscript submission process in my report earlier this year [9] and will not repeat that outline.

All manuscripts are submitted and processed through the http://www.jcmr-online.org website. I encourage all authors to closely follow the guidelines so as not to delay the review process. By far, the most error that leads to review delay continues to be the omission of the names and contact information for *at least two suggested reviewers* in their submission documents. I ask authors to use *JCMR* preferred abbreviations (Table 3; https://jcmr-online.biomedcentral.com/submissionguidelines/preparing-your-manuscript/abbreviati ons) and to use the terms "CMR" and "cardiovascular magnetic resonance" rather than "cardiac magnetic resonance" or "cardiac MRI." While the abbreviation issue does not delay the review, it adds additional burden to the prepublication editing process.

I encourage authors to carefully consider the number of significant digits and reported p values in their manuscripts. For example, when reporting native T1 and standard deviation, would report to the nearest ms and not to the X.X ms or X.XX ms. While technically accurate, reporting T1 to this level of accuracy has no clinical relevance. Similarly, when reporting p values for the sample sizes of most *JCMR* publications, a value of < 0.001 is a reasonable limit.

All work submitted to the *JCMR* must be original and *cannot be under consideration by another journal until a decision is made by the JCMR*. Though a rare occurrence, we have encountered instances where authors had multiple simultaneous submissions. When we become aware of this, the manuscript is immediately withdrawn from further consideration and the authors are put on administrative warning.

Table 2 2020 Monthly JCMR Journal Club Editor, Presenter, Manuscript. Continuing medical education (CME) is offered for reading of	
the manuscript and is a complimentary benefit for SCMR members	

Date	Journal Club Editor	Presenter	Manuscript
1/13/2021	Raymond Kwong	Tomaz Podlesnikar	Left ventricular functional recovery of infarcted and remote myocardium after ST- segment elevation myocardial infarction (METOCARD-CNIC randomized clinical trial substudy [22]
2/10/2021	Matthias Stuber	Lenhard Pennig	Clinical application of free-breathing 3D whole heart late gadolinium enhancement cardiovascular magnetic resonance with high isotropic spatial resolution using Compressed SENSE [23]
3/10/2021	Scott Flamm	Claire Raphael (Sanjay Prasad)	Cardiovascular magnetic resonance predictors of heart failure in hypertrophic cardio- myopathy: the role of myocardial replacement fibrosis and the microcirculation [24]
4/14/2021	Raymond Kwong	Theo Pezel (Jerome Garot)	Long-term prognostic value of stress perfusion cardiovascular magnetic resonance in patients without known coronary artery disease [25]
5/12/2021	Matthias Stuber	Thu-Thao Le	Multiparametric exercise stress cardiovascular magnetic resonance in the diagnosis of coronary artery diseases: the EMPIRE trial [26]
6/9/2021	Scott Flamm	Ying Zhang (Yuchi Han)	Comparing cardiovascular magnetic resonance strain software packages by their abilities to discriminate outcomes in patients with heart failure with preserved ejection fraction [27]
7/14/2021	Raymond Kwong	Alessia Pepe	Myocardial iron overload by cardiovascular magnetic resonance native segmental T1 mapping: a sensitive approach that correlates with cardiac complications [28]
8/10/2021	Matthias Stuber	Sorin Giusca (Greg Korosoglou)	Multi-parametric assessment of left ventricular hypertrophy using late gadolinium enhancement, T1 mapping and strain-encoded cardiovascular magnetic resonance [29]
9/8/2021	Scott Flamm	Robert Holtackers	Dark-blood late gadolinium enhancement cardiovascular magnetic resonance for improved detection of subendocardial scar: a review of current techniques [11]
10/13/2021	Raymond Kwong	Hakan Arheden	Pulmonary blood volume measured by cardiovascular magnetic resonance: influence of pulmonary transit time methods and left atrial volume [30]
11/10/2021	Matthias Stuber	Robert Edelman	Dark blood cardiovascular magnetic resonance of the heart, great vessels, and lungs using electrocardiographic-gated three-dimensional unbalanced steady-state free precession [31]
12/8/2021	Scott Flamm	Shingo Kato	Cardiovascular magnetic resonance assessment of coronary flow reserve improves risk stratification in heart failure with preserved ejection fraction [32]

3D	Three-dimensional
4Ch	Four chamber
4D	Four-dimensional
4DF	Four-dimensional flow
6MWT	Six minute walk test
A	Area
A2C	Apical two chamber
A4C	Apical four chamber
AA	Aortic arch
AA	Adductor artery
AAA	Abdominal aortic aneurysm
AAo	Ascending aorta
AAOCA	Anomalous aortic origin of the coronary arteries
AAP	American academy of pediatrics
AAR	Area at risk
ABI	Ankle-brachial index
AC	Arrhythmic cardiomyopathy
ACA	Anterior cerebral artery
ACAOS	
ACAOS	Anomalous coronary artery origin from the opposite sinus
ACAR	Acute cardiac allograft rejection
ACCF	American College of Cardiology
	American College of Cardiology Foundation
ACDC	Automated Cardiac Diagnosis Challenge
	Angiotensin converting enzyme inhibitor
aCNR	Apparent contrast-to-noise ratio
ACS	Acute coronary syndrome
ACR	American College of Radiology
ACR	Acute cardiac rejection
ACS	Acute coronary syndrome
AD	Aortic distensibility
AD	Aortic dissection
ADAM	Adaptive moment estimation algorithm
ADC	Apparent diffusion coefficientddddddddd
ADMM	Alternating direction method of multipliers
ADP	Adenosine diphosphate
ADT	Appropriate device therapy
AE	Adverse event
AF	Atrial fibrillation
AF	Atlas Forests
AFD	Anderson-Fabry disease
AFP	Adiabatic full passage
AG	Attention gates
AHA	American Heart Association
AHP	Adiabatic half passage
AI	Artificial intelligence
AIC	Akaike's information criteria
AIF	Arterial input function
AIM	Annular inflow method
AKI	Acute kidney injury
AL	Amyloid light chain
ALM	Appendicular lean mass

. ,	
ALSA	Aberrant left subclavian artery
aLV	Apical left ventricle
AM	Acute myocarditis
AMA	American Medical Association
AMI	Acute myocardial infarction
AML	Anterior mitral leaflet
AMR	Antibody mediated rejection
ANCA	Anti-neutrophil cytoplasmic antibody
ANCOVA	Analysis of covariance
ANOVA	Analysis of variance
AOA	Anatomic orifice area
AoR	Aortic root
AP	Anterior-posterior
AP	Aorto-pulmonary
АрА	Apical angle
APC	Aortopulmonary collateral
APEF	Apical ejection fraction
APMHR	Age predicted maximal heart rate
APVD	Anomalous pulmonary venous drainage
ARB	Angiotensin receptor blocker
ARD	Autoimmune rheumatic diseases
ARDS	Acute respiratory distress syndrome
ARoot	Aortic root
ART	Antiretroviral therapy
ARVC	Arrhythmogenic right ventricular cardiomyopathy
AS	Aortic stenosis
aSNR	Apparent signal-to-noise ratio
ASD	Atrial septal defect
ASD	Average surface distance
ASE	American Society of Echocardiography
ASI	Aortic size index
ASL	Arterial spin labeling
ASNC	American Society of Nuclear Cardiology
ASO	Arterial switch operation
AT2R	Angiotensin 2 receptor
AT1R	Angiotensin 1 receptor
ATP	Adenosine triphosphate
ATP	Antitachycardia pacing
ATTR	Amyloid transthyrein (amyloidosis)
AUC	Appropriate use criteria
AUC	Area under the curve
AVA	Aortic valve area
AVAI	Aortic valve area index
AVC	Arrhythmic ventricular cardiomyopathy
AVC	Aortic valve closure
AVI	Aorto-vertebral interface
AVM	Arteriovenous malformation
AVO ₂	Arteriovenous oxygen
AVPD	Atrioventricular plane descent
AVR	Aortic valve replacement
AVVR	Atrioventricular valve regurgitation
/ \v v I \	

3A	Basilar artery
3AV	Bicuspid aortic valve
В	Black blood
3	Bright blood
3TI	Black blood thrombus imaging
CA	Brachiocephalic artery
	Blind compressed sensing
CW	Backwards compression wave
DG	Bidirectional Glenn
4	Breath hold
C	Bayesian information criteria
PAP	Bi-level positive airway pressure
V	Biventricular
V	Basal left ventricle
ИС	Blood-to-myocardial contrast
ИD	Becker muscular dystrophy
٨I	Body mass index
VV	Bioprosthetic mitral valve
۱P	Brain natriuretic peptide
DLD	Blood-oxygen dependent contrast
DOST	Bright-blood and black-blOOd phase SensiTive inversion recovery
	Blood pressure
°D	Bronchopulmonary dysplasia
M	Beats per minute
A	Body surface area
SFP	Balanced steady state free precession
JN	Blood urea nitrogen
ſ	Fractional tissue blood volume per cardiac tissue volume
V	Band width
V	Body weight
	Compacted
SENSE	Compressed sensitivity encoding
4	Cardiac amyloidosis
1A	Coronary artery anomaly
lA	Coronary artery aneurysm
ABG	Coronary artery bypass graft
AC	Coronary artery calcification
AD	Coronary artery disease
ΑP	Cardiac Atlas Project
ATCH	Coronary atherosclerosis T1w characterization with integrated anatomic reference
AV	Coronary allograft vasculopathy
AVI	Cardio-ankle vascular index
3C	Complete blood count
BCMR	Certification Board of Cardiovascular Magnetic Resonance
3F	Coronary blood flow
<u>C</u> A	Common carotid artery
CMRA	Coronary cardiovascular magnetic resonance angiography
TGA	Congenitally corrected transposition of the great arteries
DC	United States Centers for Disease Control and Prevention
DTI	Cardiac diffusion tensor imaging

Table 3 (continued)
-----------	------------

	Contract with some d
CE CE	Contrast enhanced
	Cholesterol esthers
	Cardiac events
E	Conformité Européenne
E	Continuing education
E-MARC	Clinical Evaluation of Magnetic Resonance Imaging in Coronary Heart Disease
EA	<i>Carotid endarterectomy</i>
EA	Cost effectiveness analysis
EF	Coronary endothelial function
EP	Clinical end-point
ETP	Cholesterylester transfer protein
F-PWV	Carotid-femoral pulse wave velocity
F	Center frequency
FA	Common femoral artery
Ā	Compartment fractional anisotropy
FD	Computational flow dynamics
FR	Coronary flow reserve
HD	Congenital heart disease
HESS	Chemical shift selective saturation
HIP	Coronary hyper-intense plaque
,	Confidence interval
,	Cardiac index
A	Common iliac artery
C	Cardiac iron concentration
ED	Cardiac implanted electronic device
IF	Cumulative incidence function
" ircE	Circulatory efficiency
K	Creatine kinase
KD	Chronic kidney disease
	Cross-linked iron oxide
LIO	
MD	Compartment mean diffusivity
MD	Coronary microvascular dysfunction
ME	Continuing medical education
MET	Cardiac metastases
MP	Central mean pressure
MP	Cardiomyopathy
MR	Cardiovascular magnetic resonance
MRA	Coronary magnetic resonance angiography
MRA	Cardiovascular magnetic resonance angiography
MRS	Cardiovascular magnetic resonance spectroscopy
MRV	Cardiovascular magnetic resonance venography
MS	Centers for Medicare and Medicaid Services
MV	Cytomegalovirus
NN	Convolutional neural networks
NR	Contrast-to-noise ratio
NS	Central nervous system
0	Cardiac output
O _{eff}	Effective cardiac output
oA	Coarctation of aorta
OCATS	Core Cardiovascular Training Statement

CoG	Center of gravity
СоМ	Center of mass
COPD	Chronic obstructive pulmonary disease
COR	Class of recommendation
CorCTA	Coronary computed tomography angiography
COSMOS	Calculation of susceptibility through a multiple-oreintation sampling
CoV	Coefficient of variation
COVID-19	Coronavirus disease 2019
СР	Circulatory power
CPET	Cardiopulmonary exercise testing
СРК	Creatine phosphokinase
СРО	Cardiac power output
CPR	Curved planar reconstruction
Cr	Creatinine
CR	Contrast ratio
CRF	Cardiorespiratory fitness
CRP	C-reactive protein
CRT	Cardiac resynchronization therapy
CS	Compressed sensing
CS	Coronary sinus
CS	Circumferential strain
CSA	Cross-sectional area
CSBF	Coronary sinus blood flow
CSDE	Chemical shift displacement error
CSF	Cerebral spinal fluid
CSI	Chemical shift imaging
CSPAMM	Complementary spatial modulation of magnetization
СТ	Computed tomography
CT-FT	Computed tomography feature tracking
cT1	Corrected T1
СТА	Computed tomography angiography
CTD	Connective tissue disease
СТЕРН	Chronic thromboembolic pulmonary hypertension
cTn	Cardiac troponin
СТО	Chronic total occlusion
CTRCD	Cancer therapy-related cardiac dysfunction
CuCo	Cusp to commissure
CuCu	Cusp to cusp
CV	Cardiovascular
CVA	Cerebrovascular attack
cVAE	Conditional variational autoencoder
CVD	Cardiovascular disease
CVF	Collagen volume fraction
CVO	Combined ventricular output
CVP	Central venous pressure
CVR	Cerebrovascular resistance
D	Distance
D-TGA	Dextro-transposition of the great arteries
dAA	Distal aortic arch
dAA	Distal ascending aorta
DA	Descending aorta

DAA	Double aortic arch
DB	Dark blood
DBP	Diastolic blood pressure
DC	Distensibility coefficient
DC	Diagnostic confidence
DCE	Dynamic contrast enhancement
DCI	Diffusion compartment imaging
DCM	Dilated cardiomyopathy
DCMR	Dobutamine stress cardiovascular magnetic resonance
DCMRL	Dynamic contrast cardiovascular magnetic resonance lymphangiography
DCS	Diastolic circumferential strain
DD	Ductus diverticulum
dDA	Distal descending aorta
dDNP	Dissolution dynamic nuclear polarization
De	Dean number
DENSE	Displacement encoding with stimulated echoes
DESPOT	Driven equilibrium single pulse observation of T1
DEXA	Dual-energy x-ray absorptiometry
DICOM	Digital imaging and communications in medicine
DIF	Diffuse interstitial fibrosis
DIR	Double inversion recovery
DIRV	Double inlet right ventricle
DL	Deep learning
DLCO	Diffusion lung capacity for carbon monoxide
DLV	Dominant left ventricle
DM	Diabetes mellitus
DMD	Duchenne's muscular dystrophy
DMF	Diffuse myocardial fibrosis
dNAV	Diaphragmatic navigator
DORV	Double outlet right ventricle
DRA	Dark rim artifact
DRV	Dominant right ventricle
DSA	Digital subtraction angiography
DSA	Donor specific antibodies
DSC	, Dice similarity coefficient
DSE	Dobutamine stress echocardiography
DORV	Double outlet right ventricle
dp-SIR	Dentate nucleus to pons signal intensity ratio
DRA	Dark rim artifact
DRAPR	Deep learning radial acceleration with parallel reconstruction
DSA	Digital subtraction angiography
DSC	DICE similarity coefficient
DSS	Dahl salt-sensitive
DSVR	Deformable slice to volume registration
DTA	Descending thoracic aorta
DTI	Diffusion tensor imaging
DUS	Doppler ultrasound
DTPA	
	Diethylenetriaminepentaacetic acid
DTW	Dynamic time warp
DVQ	Diastolic vorticity quotient
DVD	Double vessel disease

DVT	
DW	Deep venous thrombosis Diffusion weighted
DW	-
DWI	<i>Dry weight</i> Diffusion weighted imaging
E2A	Secondary eigenvector
e'	Early diastolic velocity
Ea	Effective elastance
Ea	Arterial elastance
EACVI	
EACVI	European Association of Cardiovascular Imaging
EBV	Electroanatomic map
ECA	Epstein-Barr virus
	External carotid artery Circumferential strain
Ecc	Extracardiac conduit
ECC ECF	Extracellular fluid
ECF	
ECG	Electrocardiogram Extracellular matrix
ECMO	Extracorpeal membrane oxygenation
ECV	Extracellular volume fraction Measured extracellular volume fraction
ECVm	
ECVsyn	Synthetic extracellular volume fraction End-diastole
ED	
EDD EDS	End-diastolic dimension
EDS	Ehlers-Danlos syndrome End-diastolic volume
EDVI EED	End-diastolic volume index
EEM	Endocardial edge delineation External elastic membrane
Ees	End-systolic elastance
EF	Ejection fraction
EF	Emptying fraction
EF1	First phase ejection fraction
eCNR	Estimated contrast-to-noise ratio
EGE	Early gadolinium enhancement
EGEr	Early gadolinium enhancement ratio
eGFR	Estimated glomerular filtration rate
EGPA	Eosinophilic granulomatosis with polyangiitis
El	Eccentricity index
EL	Energy loss
ELBO	Evidence lower bound
Ell	Longitudinal strain
EMA	European Medicines Agency
Emax	Maximal end-systolic elastance
EMB	Endomyocardial biopsy
EMG	Electromyogram
EMI	Electromagnetic interference
EMS	Emergency medical services
ENDO	Endocardium/endocardial
ENMC	European Neuromuscular Centre
EOA	Effective orifice area
EOAI	Effective orifice area index

EP	Electrophysiological
EPI	Echoplanar imaging
EPI	Epicardium/epicardial
EQ	Energy quotient
EROA	Effective regurgitant orifice area
Err	Radial strain
ERS	European Respiratory Society
ES	End-systole
ES	Edge sharpness
ES	Eisenmenger syndrome
ESC	European Society of Cardiology
ESCR	European Society of Cardiovascular Radiology
ESD	End-systolic dimension
ESFS	End-systolic fiber stress
ERS	European Respiratory Society
ESMA	Elastin specific magnetic resonance agent
ESNR	Estimated signal-to-noise ratio
ESPVR	End-systolic pressure volume relationship
ESR	European Society of Radiology
ESRD	End-stage renal disease
ESS _{sep}	End-sustolic septal strain
ESV	End systelic september 201
ESVI	End-systolic volume index
ESWS	End-systolic wall stress
ETA	Elongated transverse aortic arch
ETL	
EVA	Echo train length
Ex-CMR	Expectation maximization weighted algorithm
	Exercise stress cardiovascular magnetic resonance
FA	Flip angle
FA	Fatty acid
FA	Fractional anisotropy
FAC	Fractional area change
FB	Free breathing
FBG	Fasting blood glucose
FC	Fibrous cap
FCN	Fully convolutional neural network
FCNN	Fully connected neural network
FCR	Fibrous cap rupture
FCR	Flow convergence region
FCSA	Fast composite splitting algorithm
FCW	Forward compression wave
FD	Flow diverter
FD	Fractal dimension
FDA	United States Food and Drug Administration
FE	Ferumoxytol enhanced
FED	Fibroelastic deficiency
FEV1	Forced expiratory volume
FID	Free induction decay
FDA	United States Food and Drug Administration
FDG	Fluorodeoxyglucose
FEV1	Forced expiratory volume in one second

FFE	Fast field echo
FFR	Fractional flow reserve
FT	Fast Fourier transform
FTO	Fontan fenestration test occlusion
FV	Forward flow volume
GP	Fast gradient projection
H	Foot-head
	Family history
'HS	Framingham Heart Study
IDDLE	Flow independent dark-blood delayed enhancement
IRE	Framework for image reconstruction
ISTA	Fast iterative shrinkage-threshold algorithm
L	False lumen
LAIR	Fluid attenuated inversion recovery
LASH	Fast low angle shot
LEF	
M	False lumen ejection fraction First order moment
MRI	
N	Functional magnetic resonance imaging
NAV	False negative
OV	Focused navigation Field-of-view
P	False positive
PP	First pass perfusion
PR	False positive rate
S	Fat saturation
S	Fractional shortening
SHD1	Facioscapulohumeral muscular dystrophy type 1
SE	Fast spin echo
SL	Spin lock frequency
T	Fourier transform
T	Feature tracking
TAAD	Familial Thoracic Aortic aneurysms and dissection syndrome
VC	Forced vital capacity
W	Free wall
WHM	Full width at half maximum
WLS	Free wall longitudinal strain
6A	Gestational age
5AN	Generative adversarial network
BCA	Gadolinium based contrast agent
БВМ	Gradient boosting machine
GC-LOLA	Gradient controlled local Larmor adjustment
GCS	Global circumferential strain
GCSR	Global circumferential strain rate
Gd	Gadolinium
GDMT	Goal directed medical therapy
<u>GFA</u>	Generalized fractional anisotropy
GLCM	Gray-level co-occurrence matrix
GLRLM	Gray-level run-length matrix
<u>Ĵ</u> LM	General linear models
GLS	Global longitudinal strain
GLSR	Global longitudinal strain rate

GPAC	Global Physical Activity Questionnaire
GPU	Graphical processor units
GQI	Generalized Q-space imaging
Grad-CAM	Gradient-weighted class activation mapping
GRAPPA	Generalized autocalibrating partially parallel acquisition
GraSE	Gradient and spin echo
GRASP	Golden angle radial sparse parallel
GRE	Gradient recalled echo
GRS	Global radial strain
GS	Golden-step
GSS	Global severity score
GT	Ground truth
GWAS	Genome wide association study
H&E	Hematoxylin and eosin
HA	Helix angle
HARP	Harmonic phase magnetic resonance
HASTE	Half-Fourier single shot turbo spin echo
Hb	Hemoglobin
HbA1c	Hemoglobin A1c
НСМ	Hypertrophic cardiomyopathy
Hct	Hematocrit
HCTsyn	Synthetic hematocrit
H _d	Helical density
HD	Housdorff distance
HDL	High density lipoprotein
HDPE	High-density polyethylene
HE	Hematoxylin and eosin
HEIDI	Homogeneity-enabled incremental dipole inversion
HES	Hyperesoinophilic syndrome
HF	Heart failure
HFI	Helical flow index
HFmrEF	Heart failure with mid-range ejection fraction
HFpEF	Heart failure with preserved ejection fraction
HFrEF	Heart failure with reduced ejection fraction
Hb	Hemoglobin
HFR	Holodiastolic flow reversal
HHD	Hypertensive heart disease
HHFP	Hypertension-associated heart failure in pregnancy
HHV	Human herpes virus
HIP	High intensity plaque
HIV	Human immunodeficiency virus
HIVAC	Human immunodeficiency virus associated cardiomyopathy
HLA	Horizontal long axis
HLHS	Hypoplastic left heart syndrome
НОСМ	Hypertrophic obstructive cardiomyopathy
HOMA-IR	Homeostasis model assessment-estimated insulin resistance
HP	Hyperpolarized
HPF	High-power field
HPLHS	Hypoplastic left heart syndrome
HR	Heart rate
HR	Hazard ratio
	ו ועבעות וענוס

HR	High resolution
HR-VWI	High resolution vessel wall imaging
HRS	Heart Rhythm Society
HS	High salt
hsCRP	High sensitivity c-reactive protein
hs-cT	High sensitivity cardiac troponin
hs-cTnl	High sensitivity cardiac troponin l
hs-cTnT	High sensitivity cardiac troponin T
HSCT	Hematopoietic stem cell transplantation
HU	Hounsfield units
HV	Hepatic vein
HW	Heart weight
I/R	Ischemia/reperfusion
IAA	Infrarenal abdominal aorta
IAD	Intracranial artery dissection
ICA	Internal carotid artery
ICA	Iodinated contrast agent
ICA	Invasive coronary angiography
ICC	Intraclass correlation coefficient
ICD	Implanted cardiodefibrillator
ICE	Intracardiac echocardiography
ICE	Image reconstruction environment
ICM	Ischemic cardiomyopathy
iCMR	Invasive cardiovascular magnetic resonance
ICTP	Type I collagen C terminal telopeptide
ICU	Intensive care unit
IDI IF	Integrative discrimination index
IF IFG	Immunofluorescence
iFR	Impaired fasting glucose Instantaneous wave-free ratio
IFT	Inverse Fourier transform
IHC	Immunohistochemical
IHD	Ischemic heart disease
IHG	Isometric hand grip
IIM	Idiopathic inflammatory myopathy
ILT	Intraluminal thrombus
IMCL	Intramyocardial lipids
IMH	Intramyocardial hemorrhage
iNAV	Image-based navigator
INCA study	Impact of Non-invasive CMR Assessment
iNO	Inhaled nitric oxide
INOCA	Ischemia with no obstructive coronary arteries
INR	International normalized ratio
IO	Iron overload
IOC	Iron overload cardiomyopathy
loU	Intersection over union
IPAH	Idiopathic pulmonary artery hypertension
IPH	Intraplaque hemorrhage
iРTH	Immunoreactive parathyroid hormone
IQ	Image quality
IQA	Image quality Image quality assessment
	image quaity assessment

IQR	Interquartile range
IR	Inversion recovery
IRF	Impulse response function
IRF	In-plane rotational flow
IRSE	Inversion recovery spin echo
IRSF	Inversion recovery snapshot flash
ISF _{sep-lat}	Internal stretch factor
ISHLT	International Society of Heart and Lung Transplantation
ISMRMRD	International Society for Magnetic Resonance in Medicine Raw Data
ISO	Isotropic diffusion component
IV	Intravenous
IVIG	Intravenous gamma immunoglobulin
IVMD	Interventricular mechanical delay
IVUS	Intravascular ultrasound
IVC	Inferior vena cava
IVS	Interventricular septum
IVST	Interventricular septal thickness
IVUS	Intravascular ultrasound
JSENSE	Joint image reconstruction and sensitivity estimation in sensitivity encod- ing
Kat-ARC	K-adaptive-t autocalibrating reconstruction for cartesian sampling
KD	Kawasaki disease
KE	Kinetic energy
KE _{iEDV}	Kinetic energy normalized to left ventricular end-diastolic volume
Kt-BLAST	Kt broad linear speed up technique
L-L	Leading to leading
L-TGA	Levo-transposition of the great arties
LA	Left atrium/left atrial
LA	Long axis
LA	Left anterior
LAA	Left atrial appendage
Lac	Lactate
LAD	Left atrial descending coronary artery
LAEF	Left atrial emptying fraction
LAAEmF	Left atrial active emptying function
LAPEmF	Left atrial passive emptying function
LASSO	Least absolute shrinkage and selection operator
LATEmF	Left atrial total emptying function
LAV	Left atrial volume
LAVI	Left atrial volume index
LAVmax	Maximal left atrial volume
LAVmax-I	Maximal left atrial volume indexed to body surface area
LAVmin	Minimal left atrial volume
LAVmin-l	Minimal left atrial volume indexed to body surface area
LAx	Long axis
LBF	Lower body fat
LBBB	Left bundle branch block
LBP	Local binary patterns
LCA	
LCBI	Left coronary artery
	Lipid coreburden index
LCP	Leadless cardiac pacemaker

LCX	Left circumflex coronary artery
LDA	Linear discriminant analysis
LDH	Lactate dehydrogenase
LDL	Low density lipoprotein
LDS	Loeys-Dietz syndrome
LE	Loeffler's endocarditis
LFP	Linear flip angle
LGE	Late gadolinium enhancement
LHC	Left heart catheterization
LHM	Left handed helix angle
LIPV	Left inferior pulmonary vain
LISA	Linearly increasing start-up angles
LL	Lower limit
LL	Lower limb
LLC	Lake Louise criteria
LM	Left main coronary artery
LM	Loose matrix
LMS	Lambda-Mu-Sigma
LNH	Local normalized helicity
LOA	Limits of agreement
LOE	Level of evidence
LOS	Length of stay
LOST	LOw-dimensional-structure Self-learning and Thresholding
LP	Left posterior
LP	Label propagation
LPA	Left pulmonary artery
LR	Left-right
LR	Low resolution
LR	Logistic regression
LRNC	Lipid rich necrotic core
LRP	Lipid rich plaque
LS	Longitudinal strain
LSCA	Left subclavian artery
LSPV	Left superior pulmonary vein
LT	Lateral tunnel
LV	Left ventricle/left ventricular
LVAD	Left ventricular assist device
LVEDVP	Left ventricular end-diastolic pressure
LVEDV	Left ventricular end-diastolic volume
LVEDVI	Left ventricular end-diastolic volume index
LVEF	Left ventricular ejection fraction
LVESV	Left ventricular end-systolic volume
LVM	Left ventricular mass
LVMI	Left ventricular mass index
LVMP	Left ventricular myocardial power
LVNC	Left ventricular non-compaction
LVOT	Left ventricular outflow tract
LVOTO	Left ventricular outflow tract obstruction
LVRR	Left ventricular reverse remodeling
LW	Linewidth
LWD	Lung water density
	- /

Middle corebral arten
Middle cerebral artery Second order motion compensation
Mitral annulus/mitral annular
Methamphetamine-associated Metamphetamine associated cardiomyopathy
Mid-ascending aorta
Mid ascending aorta diameter
Mid aortic arch
Moving angle crossing
Major adverse cardiovascular event
Mitral annular disjunction
Mean absolute error
Mean aortic pressure
Mean arterial pressure
Mean average percentage error
Mitogen activated protein kinase
Mitral annular plane systolic excursion
Myocardium at risk
Markers And Response to CRT study
Maximum 4-mm lipid core burden index
Myocardial blood flow
Myocardial blush grade
Mean blood pressure
Myocardial blood volume
Middle cerebral artery
Mean contour distance
Myocardial contrast echocardiography
Myocardial contraction fraction
Monocyte chemoattractant protein
Mean diffusivity
Muscular dystrophy
Myotonic dystrophy II
Multidetector computed tomography
Multislice double inversion recovery
Modified Dixon
Mid descending aorta
Mitral deceleration time
Morphology enabled dipole inversion
Motion sensitized driven equilibrium rapid gradient echo
Multi-Ethnic Study of Atherosclerosis
Multi-echo spin echo
Medical Subject Heading
Metabolic equivalent
Myocyte fractional anisotropy
Myocardial flow reserve
Marfan syndrome
Magnetohydrodynamic effect
Myocardial infarction
Magnitude image CSPAMM
magnitude intrage continum
Myocardial infarction with no obstructive coronary arteries

MIP	Maximal intensity projection
MIS	Multisystem inflammatory syndrome
MIS-C	Multisystem inflammatory syndrome in children
ML	Machine learning
MLHFO	Minnesota Living with Heart Failure Questionnaire
mLV	Mid-left ventricle
mLVEF	Mid-range left ventricular ejection fraction
MM	Mitochondrial related mutation
MMD	Myotonic muscular dystrophy
MMP	Metalloproteinases
MMRC	Modified Medical Research Council
Mn	Manganese
MO	Microvascular obstruction
МОСО	Motion corrected
MOG	Metric optimized gating
MOLLI	MOdified Look Locker Inversion recovery
MOOSE	Meta-analysis Of Observational Studies in Epidemiology
MP	Myocardial perfusion
MP-RAGE	Magnetization prepared rapid acquisition gradient echo
MPA	Main pulmonary artery
mPAP	Mean pulmonary artery pressure
MPBF	Maldistribution of pulmonary blood flow
MPD	Maximum perpendicular distance
MPG	Mean pressure gradient
MPI	Myocardial perfusion imaging
MPO	Myeloperoxidase
MPR	Myocardial perfusion reserve
MPR	Multiplanar reconstruction/reformatting
MPRAGE	Magnetization prepared rapid acquisition gradient echo
MPRI	Myocardial perfusion reserve index
MR	Magnetic resonance
MR	Mitral regurgitation
MR-IMPACT	CMR for Myocardial Perfusion Assessment in Coronary Artery Disease
MR-INFORM	Magnetic Resonance Perfusion or Fractional Flow Researve in Coronary Artery Disease trial
MRA	Magnetic resonance angiography
mRAP	Mean right atrial pressure
MRE	Magnetic resonance elastography
MRegur	Mitral regurgitation
MRI	Magnetic resonance imaging
mRNA	Messenger RNA
MS	Mitral stenosis
MRS	Magnetic resonance spectroscopy
mSASHA	Modified saturation recovery single-shot acquisition
mSAX	Midventricular short axis
MSD	Mean surface distance
MSDR	Maximum systolic deceleration rate
MSE	Mean squared error
MSI	Myocardial salvage index
MT	Magnetization transfer
MTC	Magnetization transfer contrast

mtDNA	Mitochondrial DNA
MTG	Myocardial triglyceride content
MUGA	Multi-acquisition gated angiography
MUSIC	Multiphase steady-state imaging with contrast enhancement
MV	Mitral valve
MV	Mixed venous
MVA	Mitral valve area
MVD	Microvascular disease
MVO	Microvascular obstruction
MVO ₂	Myocardial oxygen consumption
MVP	Mitral valve prolapse
MVPA	Moderate to vigorous physical activity
MVR	Mass volume ratio
MVR	Mitral valve repair
MVR	Mitral valve replacement
MVV	Maximal voluntary ventilation
MWS	Mid-wall striae
MWT	Maximal wall thickness
MYO	Myohemoglobin
n-SD	Number of standard deviations
NASCET	North American Symptomatic Carotid Endarterectomy Trial
NAV	Navigator
NASCI	North American Society of Cardiovascular Imaging
NC	Non-compacted
NC	Necrotic core
NC	Non-connective tissue
NC	Non-contrast
NCS	Normalized circumferential strain
n.d	Non-dimensional
NDCM	Non-ischemic dilated cardiomyopathy
nDNA	Nuclear DNA
NF	Net flow
NFG	Non-fasting glucose
NHS	National Health Service
NICM	Non-ischemic cardiomyopathy
NHLBI	National Heart Lung and Blood Institute
NIHSS	National Institutes of Health Stroke Scale
NIRS	Near infrared spectroscopy
NIST	National Institute of Standards and Technology laboratory
NLP	Newborn Lung Project
NO	Nitric oxide
NOS	Newclastle-Ottawa quality assessment scale
NR	Non-rigid
nRDI	Non-restricted diffusion index
NRI	Net reclassification index
NS	Non-selective
NS	Normal salt
NSF	Nephrogenic systemic fibrosis
NSTEMI	Non ST elevation myocardial infarction
NSVT	Non-sustained ventricular tachycardia
NT-pro BNP	N-terminal pro-hormone brain natriuretic peptide
ічт-ріо Divr	איזיניוווומו איזיראטוויטוופ טומוו וזמנועופוג אפאנעפ

NWI	Normalized wall index
NYD	Not yet diagnosed
NYHA	New York Heart Association
0-0	Outer to outer
OCT	Optical coherence tomography
OPF	Orientation distribution function
ОНСА	Out-of-hospital cardiac arrest
OMT	Optimal medical therapy
OR	Odds ratio
ORO	Oil red O
OS	Oxygen sensitive
OSA	Obstructive sleep apnea
OSI	Oscillatory shear index
OV	Overlapping
OVS	Outer volume suppression
OXPHOS	Oxidative phosphorylation
PA	Popliteal artery
PA	Pulmonary artery
PAB	Pulmonary artery banding
PAC	Pulmonary artery compliance
PACS	Picture archiving and communication system
PAD	Peripheral arterial disease
pAF	Paroxysmal atrial fibrillation
РАН	Pulmonary artery hypertension
PANDA	Principle component analysis and dictionary learning
PAP	Pulmonary artery pressure
PAPR	Powered air-purifying respirators
PAPVC	Partial anomalous pulmonary venous connection
PAPVR	Partial anomalous pulmonary venous return
PAQ-C	Physical Activity Questionnaire for older Children
PAS	Pulmonary artery stenosis
PASC	Post-acute sequelae Covid-19
PASP	Pulmonary artery systolic pressure
PAWP	Pulmonary artery wedge pressure
PAWS	Phase-ordered automatic window selection
PBV	Pulmonary blood volume
PBVV	Pulmonary blood volume variation
PC	Phase contrast
PC	Principle component
PCA	Principal component analysis
PCA	Phase contrast angiography
PCI	Percutaneous coronary intervention
PCMR	Phase contrast magnetic resonance
PCr	Phosphocreatine
PCR	Polymerace chain reaction
PCS	Peak circumferential strain
PDA	Patent ductus arteriosus
PDA	Posterior descending coronary artery
PDF	Projection onto dipole fields
PDF	Probability distribution function
PDFF	Proton density fat fraction

PDGF	Platelet derived growth factor
PDSRC	Peak diastolic circumferential strain rate
PDSRL	Peak diastolic longitudinal strain rate
PDSRR	Peak diastolic radial strain rate
PDw	Proton density weighted
PCWP	Pulmonary capillary wedge pressure
PDH	Pyruvate dehydrogenase
PE	Phase encoding
PE	Potential energy
PE	Pulmonary embolism
PE	Parameter estimates
PEA	Pulseless electrical activity
PEA	Pulmonary endarterectomy
PET	Positron emission tomography
PF	Peak flow
PFA	Perfluoroalkoxyalkane
PFR	Peak filling rate
PFR	Perivascular fibrosis
PG	Pressure gradient
PGSE	Pulse gradient spin echo
PH	Pulmonary hypertension
PHiSeg	Probabilistic hierarchical segmentation
PHT	Pediatric heart transplantation
РНТ	Pressure half-time
PI	Pulsatility index
PICA	Posterior inferior cerebral artery
PICS	Parallel imaging compressed sensing
PISA	Proximal isovelocity surface area
PLAX	Parasternal long axis
PLM	Polarized light microscopy
pLVEF	Preserved left ventricular ejection fraction
PLS	Peak longitudinal strain
PLSVC	Persistent left superior vena cava
PM	Papillary muscle
рМI	Periprocedure myocardial injury
PML	Posterior mitral leaflet
PMMA	Polymethyl methacrylate
PMR	Plaque to myocardial signal intensity ratio
PNF	Pulmonary net flow
POC	Point-of-care
POMP	Phase offset multiplanar
PP	Pulse pressure
PPE	Personal protective equipment
PPCI	Primary percutaneous coronary intervention
PPCM	Peripartum cardiomyopathy
PPG	
	Peak pressure gradient Bitch per inch
PPI DDA4	Pitch per inch
PPM	Permanent pacemaker
PR	Precision recall
PR	Pulmonic regurgitation
PR%	Pulmonary regurgitation fraction

rec	Precision
RESS	Point resolved spectroscopy
RF	Pulmonary regurgitant fraction
RISM	Preferred reporting items for systemic reviews and meta-analysis
RISMA	Preferred reporting items for systematic reviews and meta analyses
ROST	Patch-based low-rank reconstruction
ROUD	Prospective undersampling in multiple dimensions
RS	Peak radial strain
RV	Pulmonary regurgitant volume
RVI	Pulmonary regurgitant volume index
SAT	Partial saturation
SF	Point spread function
SAX	Parasternal short axis
SIR	Phase sensitive inversion recovery
SM	Propensity score matching
	Peak systolic pressure
SYS	
SSR	Peak systolic strain rate
SSRC	Peak systolic circumferential strain rate
SSRL	Peak systolic longitudinal strain rate
SSRR	Peak systolic radial strain rate
TB	Pulmonary transit beats
TH	Parathyroid hormone
TT 	Pulmonary transit time
TFE	Polytetrafluoroethylene
V	Pulmonary valve
V	Pulmonary vein
V	Pressure volume
V	Peak velocity
VA	Pulmonary valve annulus
VC	Polyvinyl chloride
VC	Premature ventricular complexes
VDR	Pulmonary vascular distensibility reserve
VI	Pulmonary vein isolation
VL	Paravalvular leak
VO ₂	Peak oxygen comsumption
VOD	Pulmonary veno-occlusive disease
VR	Pulmonic valve replacement
VR	Pulmonary vascular resistance
VRI	Pulmonary vascular resistance index
WV	Pulse wave velocity
yr	Pyruvate
)	Flow
ALY	Quality-adjusted life year
C	Quality control
ICA	Quantitative coronary angiography
NBA	Quantitative Imaging and Biomarkers Alliance
QIR	Quadruple inversion recovery
21SS	Quiescent interval slice-selective
loc	Quality of life
	Pulmonic flow
ړې که	Systemic flow

QSM	Quantitative susceptibility mapping
QTc	Corrected QT interval
34	Right atrium/right atrial
24	Right-anterior
AA	Right aortic arch
AA	Right atrial appendage
AEF	Right atrial emptying fraction
AC	
AC	Relative area change
	Reverse adiabatic half passage
AP	Right atrial pressure
	Rapid acquisition with relaxation enhancement
APID-IHD	Rapid Cardiovascular Magnetic Resonance for Ischemic Heart Disease
AS	Renin-angiotensin system
AV	Right atrial volume
AVI	Right atrial volume index
3P	Mean radius of the blood pool
W	Receiver bandwidth
CA	Right coronary artery
ĈA .	Reverse classification accuracy
20	Right coronary ostium
2T	Randomized controlled trial(s)
	Restricted diffusion index
ACT	Relaxation-enhanced angiography without contrast and triggering
20	Recall
eLU	Rectified linear unit
ĒR	Respiratory exchange ratio
E	Radiofrequency
E	Regurgitant fraction
<u>-</u>	Random forests
F2	Random Forests
HC	Right heart catheterization
HM	Right handed orientation
PV	Right inferior pulmonary vein
L	Right-left
- VEF	Reduced left ventricular ejection fraction
MPV	Right middle pulmonary vein
MS	Root mean square
MSD	Root mean square distance
MSE	Root mean square error
00	Receiver operator characteristics
ЭС ЭС	Receiver operator curve
	Region-of-interest
DI DS	-
	Reactive oxygen species
	Right posterior
94	Recursive partitioning analysis
PA	Right pulmonary artery
PP	Rate pressure product
RT	Renal replacement therapy
RT	Relative residence time
S	Radial strain
RS	Rejection score

RSD	Relative standard deviation
RSN	Radial self-navigated
SNA	Radiological Society of North America
SPV	Right superior pulmonary vein
-	Real time
-PCR	Reverse transcription-polymerase chain reaction
TC .	Real time cine
OF	Repaired tetralogy of Fallot
 P	Return to play
J	Relative upslope
/	Right ventricle/right ventricular
/	Regurgitant volume
/D	Right ventricular dilation
/ED	Right-ventricular end-diastolic volume
/EDVI	Right ventricular end-diastolic volume index
/EF	Right ventricular election fraction
/ESVI	Right ventricular epection naction Right ventricular end-systolic volume index
/FW	Right ventricular free wall
/FWS	Right ventricular free wall strain
/H	Right ventricular hypertrophy
/	Right ventricular insertion
/LA	Right ventricular insertion
/ol /OT	Regurgitant volume
	Right ventricular outflow tract
/SP	Right ventricular systolic pressure
/T	Retrospective valve tracking
NM .	Regional wall motion
WMA	Regional wall motion abnormality
MT	Relative wall thickness
ICD	Subcutaneous implantable cardioverter defibrillator
AA	Serum amyloid A
AEs	Serious adverse events
ALLI	Small animal Look Locker inversion recovery
AM	Systolic anterior motion
APPHIRE	Saturation pulse prepared heart rate independent inversion recovery
AR	Specific absorption rate
ARS-CoV-2	Severe acute respiratory syndrome coronavirus 2
ASHA	Saturation recovery single-shot acquisition
λT	Saturation pulse
λ <i>Τ</i>	Subcutaneous adipose tissue
AVR	Surgical aortic valve replacement
Чх	Short axis
3P	Systolic blood pressure
Î AI	Society for Cardiovascular Angiography and Interventions
CCT	Society of Cardiovascular Computed Tomography
ID	Sudden cardiac death
CMR	Society for Cardiovascular Magnetic Resonance
_S	Systolic circumferential strain
0	Standard deviation
Эр	Pooled standard deviation
E	Spin echo

SEE	Standard error of the estimate
SENC	Strain encoding
ENSE	Sensitivity encoding
FA	Superficial femoral artery
FRR	Systolic flow reversal ratio
T	Semi-automated flow tracking
â	Self-gated
IR	Stress-to-rest intensity ratio
R	Selective inversion recovery
R	Signal intensity ratio
Т	Situs inversus totalis
S	Sorted golden step
MOLLI	Shortened modified Look Locker inversion recovery
	Signal intensity
	Superior-inferior
p	Septal insertion points
3	Signal intensity ratio
	Spin lock/spin locking
ASER	Semi-adiabatic localization by adiabatic selective refocusing
E	Systemic lupus erythematosus
FF	Semilunar valve forward flow
CE	Segment length in cine Semilunar valve net flow
NF	
S ,	Segmental longitudinal strain
	Single left ventricle
1	Sarcomere mutation
1	Shape mode
1A	Superior mesenteric artery
1ASH	Simultaneous acquisition of spatial harmonics
ЛС	Smooth muscle cells
1D	Standardized mean difference
1R	Spleen-to-myocardium ratio
٨S	Simultaneous multi-slice
	Self-navigated
IA	Sympathetic nerve activity
IAP	Simultaneous non-contrast angiography and intraplaque hemorrhage
IR	Signal-to-noise ratio
)	Second observer
)P	Standard operating procedures
DS	Stack of stars
	Sinus prosthesis
PACE	Sampling perfection with application-optimized contrast using different flip angle evolutions
PAIR	Spectral attenuated inversion recovery
AP	Systolic pulmonary artery pressure
PCTPD	Society of Pediatric Cardiology Training Program Directors
PAMM	Spatial modulation of magnetization
PAIR	Spectral attenuated inversion recovery
PECT	Single photon emission computed tomography
PGR	Spoiled gradient echo
PINS	Stress CMR Perfusion Imaging in the United States

SPIO	Small particle iron oxide
SPIR	Spectral presaturation with inversion recovery
SPR	Splenic perfusion ratio
SQ	Semi-quantitative
SR	Strain rate
SR	Sinus rhythm
SR	Super resolution
SR	Saturation recovery
SRR	Super resolution reconstruction
SRS	Segmental radial strain
SRS _{sep}	Systolic rebound stretch of the septum
SRV	Single right ventricle
SS	Slice-selective
SSc	Systemic sclerosis
SSDI	Social Security Death Index
SSFP	Steady state free precession
SSH	Secure shell protocol
SSI	Systolic stretch index
SSIM	Structured similarity index
SSCPAH	Systemic sclerosis pulmonary artery hypertension
bSSFP	Balanced steady state free precession
SSO	Splenic switch-off
SSR	Single volume super-resolution reconstruction
SSTSE	Single shot turbo spin echo
STE	Speckle tracking echocardiography
STEAM	Stimulated echo acquisition mode
STEMI	ST elevation myocardial infarction
STI	Susceptibility tensor imaging
STIR	Short tau inversion recovery
STJ	Sinotubular junction
STRM	Signal threshold versus reference mean
STS	Surgical Thoracic Society
SV	Stroke volume
SV	Single ventricle
SVC	Superior vena cava
SVD	Single value decomposition
SVE	Shared velocity encoding
SVI	Stroke volume index
SVM	Support vector machines
SVR	Systemic vascular resistance
SVR	Slice-to-volume registration
SVT	Supraventricular tachycardia
SW	Stroke work
S _{WALL}	Mean myocardial wall thickness
Т	Tesla
T1DM	Type 1 diabetes mellitus
T1w	T1 weighted
T2DM	Type 2 diabetes mellitus
T2prep	T2 preparation
T2w	T2 weighted
TA	Transverse angle

	Texture analysis
TA TA	Tricuspid annulus/tricuspid annular
TA TA	Tricuspid atresia
TA-WSS	Time averaged wall shear stress
TAC	Total arterial compliance
TAC	Transverse aortic constriction
TAC	Thoracic aortic calcification
TACi	Total arterial compliance index
ТАО	Transverse aortic arch
TAPSE	Tricuspid annular plane systolic excursion
TAPVC	Total anomalous pulmonary vein connection
TAV	Trileaflet aortic valve
TAVI	Transcatheter aortic valve implantation
TAVR	Transcatheter aortic valve implantation
ТВ	Tuberculosis
TBAD	Type B aortic dissection
TCFA	Thin-cap fibroatheroma
ТСМ	
ТСРС	Takotsubo cardiomyopathy
TD	Total cavopulmonary connection
TD TD	Delay time Time difference
TD TDI	Trigger delay Tissue Desclar incerio a
TE	Tissue Doppler imaging Echo time
TE _{eff}	Effective echo time
TEE TEM	Transesophageal echocardiography
TEVAR	Transmit-receive electromagnetic Thoracic endovascular aortic repair
TFC	Task Force Criteria
TFE	Turbo field echo
TG	
TGA	Triglyceride Transposition of the great arteries
TGF-B1	
THR	Transforming growth factor beta-1 Target heart rate
TI	Inversion time
TIA	Transient ischemic attack
TIMI	Thrombolysis in myocardial infarction
TIMP	Tissue inhibitors of matrix metalloproteinases
TIO	Transfusion iron overload
TKE	Turbulent kinetic energy
TL	True lumen
TM	Mixing time
ТМА	Trimethylammonium
ТМА	Trimethyl amide
TN	True negative
TOF	Tetralogy of Fallot
TOST	Two-sided test of equivalence
TP	True positive
TP	Tube prosthesis
TPG	Transpulmonary pressure gradient
TPM	Taispumonary pressure gradient Tissue phase mapping
	позас рназетнаррину

ТРМ	Trabeculae and papillary muscles
TPR	True positive rate
TPR	Total pulmonary resistance
TR	Repetition time
TR	Tricuspid regurgitation
TR	Time resolved
TRAMINER	Transfer and inversion recovery-prepared imaging
TS	Saturation delay
TSE	Turbo spin echo
TSI	Time signal intensity
TSL	Spin lock time
TT	Transit time
ТТС	
	Triphenyltetrazolium chloride
TTE	Transthoracic echocardiography
TV	Total variation
TV	Tricuspid valve
TVD	Triple vessel disease
TVI	Time velocity integral
TxREF	Transmitter B1 reference
UAP	Unstable angina pectoris
UAV	Unicuspid aortic valve
UFA	Unsaturated fatty acid
UKBB	United Kingdom BioBank
UL	Upper limit
UL	Upper limb
ULN	Upper limits of normal
US	Ultrasound
USPIO	Ultrasmall particles of iron oxide
UTE	Ultrashort echo time
UV	Umbilical vein
UWDRS	Unified Wilson's Disease Rating Scale
VA	Ventricular arrhythmias
VA	Vertebral artery
VAC	Ventricular arterial coupling
VAPOR	Variable pulse power and optimized relaxation
VAT	Visceral adipose tissue
VC	Vena contracta
VCAM	Vascular cell adhesion molecule
VCG	Vector electrocardiogram
VCO ₂	Carbon dioxide production
VD	Variable density
VD-CASPR	Variable density Cartesian trajectory with spiral profile
VE	Ventilator efficiency
VE	Minute ventilation
VEL	Viscous energy loss
VELR	Viscous energy loss rate
VENC	Velocity encoded
VES	Ventricular extra-systoles
VF	Ventricular fibrillation
VFA	Variable flip angle
VHA	Vena hemiazygos

 VHD	Valvular heart disease
VIBE	Volumetric-interpolated breath-hold examination
VIP	Volumetric-interpolated breathinoid examination Ventricular insertion points
VIP	Isotropic voxel radial projection imaging
VLA	Vertical long axis
Vmax	Maximal velocity
VNR	Velocity to noise
VO ₂	
VO ₂ VOI	Oxygen consumption Volume of interest
VOL	Volume
Vp VPS	Propagation velocity Visual presence score
VQ	Vorticity quotient
VR	Volume rendered
vSaO ₂	Mixed venous oxygen saturation
VSARR	Valve sparing aortic root replacement
VSD	Ventricular septal defect
VSMC	Vascular smooth muscle cells
VT	Ventricular tachycardia
VT	Ventilator threshold
VTE	Venous thromboembolism
VTI	Vertebral tortuosity index
VTS	Visual transmurality score
VUS	Variant of uncertain significance
VV	Interventricular
Vwall	Myocardial wall volume
vWERP	Virtual work-energy relative pressure
VWI	Vessel wall imaging
wb-LGE	Wide band late gadolinium enhancement
WC	Waist circumference
WD	Wilson Disease
WE	Water excitation
WET	Water suppression enhanced through T1 effects
WH	Whole heart
WHO	World Health Organization
WHR	Waist hip ratio
WHtR	Waist to height ratio
WIA	Wave intensity analysis
WIP	Work in progress
WISE	Women Ischemia Syndrome Evaluation
WM	Wall motion
WMA	Wall motion abnormality
WMSI	Wall motion score index
WS	Wall stress
WSS	Wall shear stress
WT	Wall thickness
WT	Wild type
WU	Wood units
ХА	X-ray angiography
XD-GRASP	Extradimensional golden-angle radial sparse parallel
XMR	Combined x-ray cardiac magnetic resonance laboratories

Zva Valvuloarterial impedance

Multiuse abbreviations are displayed in italics text

Italics refers to abbreviations that may have multiple meanings (but only one in any single manuscript)

Reviewer recognition—gold star reviewers

Reviewers are a key component to the success of the *JCMR*. In 2019, we introduced the annual JCMR Gold Star Reviewer recognition program for all those who had (1) reviewed at least 3 manuscripts (2) provided an ontime review and (3) provided a high quality review. For 2021, we also recognized the first *JCMR* Triple Gold Star Reviewer recognition for those who had received a gold start for 3 consecutive years. The 100 *JCMR* Gold Star reviewers and inaugural 31 JCMR Triple Gold Star reviewers are listed in Table 4. Please join the ranks of *JCMR* reviewers and strive to be a Gold Star reviewer! As an added incentive, reviewers have the option to receive continuing medical education (CME) credit for providing a review.

Conflict-of-interest, reviews, SCMR guideline/ position manuscripts and SCMR committee papers

Conflict-of-interest manuscripts, those for which a member of the associate editorial board is either an author, acknowledged in the manuscript or closely associated with an author, are independently handled by a Guest Editor (Table 5) chosen by me. Neither I nor any of the associate editorial board are involved with reviewer selection or with manuscript decision. Our managing editorial office assists the Guest Editor with the administrative software/Editorial Manager. If a conflict-ofinterest manuscript is accepted, the Guest Editor is recognized in the *JCMR* publication with the text "Dr. XX served as a *JCMR* Guest Editor for this manuscript."

The *JCMR* does not accept unsolicited reviews. Authors are encouraged to contact the editor-in-chief (jcmreditor@scmr.org) before submitting any reviews. In general, we expect reviews to be authored by individuals considered experts in the field and receive considerable attention/downloads. All solicited reviews follow the usual peer-review process. Several reviews were published in 2021, including reviews on 4D flow in tetralogy of Fallot [10], dark blood CMR techniques [11], and COVID [12].

The *JCMR* is the official publication of the SCMR. As such, SCMR Guidelines and Position papers endorsed by the Full (or Executive) SCMR Board(s) do *not* undergo peer review. I review these manuscripts for consistency with *JCMR* style and abbreviations. They are then published in an expeditious manner. Society position papers included documents on Level II/independent practitioner training guidelines [12], writing standards for

guidelines [13] and SCMR position paper on the role of CMR in women [14].

SCMR case of the week series

While the *JCMR* does not accept case reports, for many years, the SCMR web site has an active "Case of the Week" (https://scmr.org/page/caseoftheweekLDGPG) series, currently coordinated by Dr. Sylvia Chen. For the second time, in 2021, we published the prior year's annual case series as a single manuscript [15]. This unified publication is planned as an annual occurrence in *JCMR* to allow for these illustrative cases to be more widely available to search engines.

Continuing medical education (CME) *JCMR* journal club

For over 4 years we have been offering on-line CME credit for the benefit of our clinician readers and is a free benefit for SCMR members -allowing them to more easily fulfill the CME criteria for maintenance of their Level II or III certification [16]. This program has been a great success and was greatly expanded with 14 manuscripts in 2021. (Table 6). Please see http://scmr.peachnewmedia. com/store/provider/custompage.php?pageid=20 for the complete listing.

Social media

I am very much a social media novice, but the *JCMR* continues to be very active on Twitter with the handle "JournalofCMR." Tweets go out with the publication of each manuscript publication and announcing each Journal Club. This activity is coordinated by our two Social Media editors, Drs. Juan Lopez-Mattei and Purvi Parwani.

Gerald M. Pohost and Dudley Pennell awards

In recognition of the efforts of our inaugural editor-inchief, Dr. Gerald M. Pohost, (Fig. 3) for the past 15 years, the *JCMR* has awarded the Pohost Prize to that manuscript deemed by the associate editors and editorial board to be the best/most important manuscript published in the prior year. The associate editors and I select the Pohost finalists (Table 7) and the entire editorial board votes on the top prize. At the virtual 2021 SCMR Scientific Sessions annual meeting, the 15th Gerald M. Pohost Prize was awarded to Dr. Theo Pezel and co-workers for their manuscript "Prognostic value of vasodilator

Table 42021 JCMR gold star and triple gold star reviewers

Table 4 2021 JCIVIR gold stars
Bradley D Allen
Ryan Avery
Adrianus J. Bakermans
W. Patricia Bandettini
Tamer Basha
Nicoleta Baxan
Giovanni Biglino
Kenneth Bilchick
David Alan Bluemke
Paco Bravo
Andrea Cardona
Marcus Carlsson
YuCheng Chen
Henry Chubb
Otavio Coelho-Filho
Francisco Contijoch
Ibolya Csecs
Francesca Nesta Delling
Jonas Doerner
Robert R. Edelman
Michael Elliott
Daniel Ennis
Emil Knut Stenersen Espe
Ahmed Fahmy
Zhaoyang Fan
Vanessa Melanie Ferreira
Christopher J Francois
Marco Francone
Jérôme Garot
Matthias Gero Friedrich
Lindsay Griffin
Lars Grosse-Wortmann
Ying Kun Guo
Reza Hajhosseiny
Hassan Haji-Valizadeh
Ahmed Hamimi
Ruud B van Heeswijk
Markus Henningsson
Lazaro Eduardo Hernandez
Kan N Hor
Andrew Howarth
Peng Hu
Edward Hulten
El-Sayed Ibrahim
Masaki Ishida
Tevfik F Ismail
Jason Nathaniel Johnson
Alexandros Kallifatidis
Shingo Kato

Table 4 (continued)

Won Yong Kim
Grigorios Korosoglou
Ramkumar Krishnamurty
Selcuk Kucukseymen
Andreas Kumar
Deborah Kwon
Seung-Pyo Lee
Simon Lee
Yue-Hin Loke
Massimo Lombardi
Minjie Lu
Julian Luetkens
Wojciech Mazur
Daniel R Messroghli
Lorenzo Monti
Kai Muellerleile
Vivek Muthurangu
Takeru Nabeta
AV Naumova
Muhummad Sohaib Nazir
Thomas Neuberger
Ming-Yen Ng
Christopher Nguyen
Laura Olivieri
Ellen Ostenfeld
Dana Peters
Arno Roest
Tobias Rutz
Hajime Sakuma
Michal Schafer
Dipan J. Shah
Sujata M Shanbhag
Chetan Shenoy
Orlando P. Simonetti
Timothy Slesnick
Sahar Soleimani
Jonathan Soslow
Pascal Spincemaille
Monvadi Barbara Srichai-Parsia
Jordan B. Strom
Michael D. Taylor
Robert Tunks
Yining Wang
Mark Westwood
John Wood
Lian-Ming Wu
Yibin Xie
Alistair Young
Karolina M Zareba
Chengcheng Zhu

Triple gold start reviewers are **bolded**

Manning Journal of Cardiovascular Magnetic Resonance (2022) 24:75

Table 5 2021 JCMR guest editors

Gerard Aurigemma	
David Bluemke	
Raymond Chan	
Robert Edelman	
Paul Finn	
Robert Judd	
Raymond Kim	
Raymond Kwong	
Joao A. C. Lima	
Vivek Muthurangu	
Laura Olivieri	
Ellen Ostenfield	
Nathaniel Reichek	
Hajime Sakuma	
Matthias Stuber	
Robert Weiss	

stress perfusion cardiovascular magnetic resonance after inconclusive stress testing." [17]. The Pohost Runner-up Prize was awarded to Dr. Angelica Romero Daza and colleagues for their publication, "Mitral valve prolapse multifunctional features by cardiovascular magnetic resonance: more than just a valvular disease" [18].

At that virtual meeting, we also presented the 4th Dudley Pennell Award in recognition of the foresight of JCMR's 2nd Editor-in-Chief, Professor Dudley J. Pennell (Fig. 3) to transition the JCMR to the open-access platform (a decision (spearheaded by then SCMR Publications Committee chairman, Dr. Matthias Friedrich). Their decision markedly improved JCMR's visibility and impact factor. The Pennell award is for that original manuscript that has most contributed to the Journal's impact factor for the calendar year 3 years prior to the award. The 3rd Dudley J. Pennell Prize was awarded to Dr. Wenjia Bai et al. for their publication, "Automated cardiovascular magnetic resonance image analysis with fully convolutional networks" [19] with the runner-up Pennell Award was given to Dr. José Fernando Rodríguez -Palomares and colleagues for publication, "Aortic flow patterns and wall shear stress maps by 4D-flow cardiovascular magnetic resonance in the assessment of aortic dilation in bicuspid aortic valve disease" [20].

Stay tuned for the 15th Pohost and 4th Pennell Awards that will presented at the 23nd Scientific Sessions of the *Society* this February in Ft Lauderdale, Florida, USA!

Table 6	2021	JCMR	manuscrip	ts chosen	for	continuing	medical ec	lucation (CME)

Theo Pezel	Prognostic value of stress cardiovascular magnetic resonance in asymptomatic patients with known coronary artery o [17]					
Claire E. Raphael	CMR predictors of heart failure in hypertrophic cardiomyopathy: the role of myocardial replacement fibrosis and microcirculation [24]					
Thu-Thao Le	Multiparametric exercise stress cardiovascular magnetic resonance in the diagnosis of coronary artery disease: th EMPIRE trial [26]					
Yvonne J.M. van Cauteren	Cardiovascular magnetic resonance accurately detects obstructive coronary artery disease in suspected non-ST elevation myocardial infarction: a sub-analysis of the CARMENTA Trial [34]					
David Marlevi	False lumen pressure estimation in type B aortic dissection using 4D flow cardiovascular magnetic resonance: comparisons with aortic growth [35]					
Theo Pezel	Long-term prognostic value of stress perfusion cardiovascular magnetic resonance in patients without known coronary artery disease [25]					
Reza Hajhosseiny	Clinical comparison of sub-mm high-resolution non-contrast coronary CMR angiography against coronary CT angiography in patients with low-intermediate risk of coronary artery disease: a single center trial [36]					
Satoshi Nakamura	Long-term prognostic value of whole-heart coronary magnetic resonance angiography [37]					
Ying Zhang	Comparing cardiovascular magnetic resonance strain software packages by their abilities to discriminate out- comes in patients with heart failure with preserved ejection fraction [27]					
Aakash N. Gupta	Direct mitral regurgitation quantification in hypertrophic cardiomyopathy using 4D flow CMR jet tracking: evaluation in comparison to conventional CMR [38]					
Luuk H.G.A. Hopman	Impaired left atrial reservoir and conduit strain in patients with atrial fibrillation and extensive left atrial fibrosis [39]					
Andrew N. Jordan	Morphological and functional cardiac consequences of rapid hypertension treatment: a cohort study [40]					
Shingo Kato	Prognostic value of resting coronary sinus flow determined by phase-contrast cine cardiovascular magnetic resonance in patients with known or suspected coronary artery disease [41]					
Alastair J. Rankin	Myocardial changes on 3T cardiovascular magnetic resonance imaging in response to haemodialysis with fluid removal [42]					

Bold manuscripts were also selected for 2021 JCMR Journal Club presentations

 Table 7
 2022 Gerald M. Pohost Award Finalists. Dr. Pezel [17] was the recipient of the 14th Gerald M. Pohost Award. Dr. Romero Daza

 [18] was the runner-up

Edelman, R.R., Leloudas, N., Pang, J. et al. Dark blood cardiovascular magnetic resonance of the heart, great vessels, and lungs using electrocardiographic-gated three-dimensional unbalanced steady-state free precession [31]

Edy, E., Rankin, A.J., Lees, J.S. et al. Cardiovascular magnetic resonance for the detection of descending thoracic aorta calcification in patients with endstage renal disease [43]

Li, S., He, J., Xu, J. et al. Patients who do not fulfill criteria for hypertrophic cardiomyopathy but have unexplained giant T-wave inversion: a cardiovascular magnetic resonance mid-term follow-up study [44]

Loke, YH., Capuano, F., Cleveland, V. et al. Moving beyond size: vorticity and energy loss are correlated with right ventricular dysfunction and exercise intolerance in repaired Tetralogy of Fallot [45]

Nakamura, S., Ishida, M., Nakata, K. et al. Long-term prognostic value of whole-heart coronary magnetic resonance angiography [37]

Pezel, T., Unterseeh, T., Garot, P. et al. Prognostic value of vasodilator stress perfusion cardiovascular magnetic resonance after inconclusive stress testing [33]

Romero Daza, A., Chokshi, A., Pardo, P. et al. Mitral valve prolapse morphofunctional features by cardiovascular magnetic resonance: more than just a valvular disease [18]

Seraphim, A., Knott, K.D., Beirne, AM. et al. Use of quantitative cardiovascular magnetic resonance myocardial perfusion mapping for characterization of ischemia in patients with left internal mammary coronary artery bypass grafts [46]

Thompson, E.W., Kamesh Iyer, S., Solomon, M.P. et al. Endogenous T1p cardiovascular magnetic resonance in hypertrophic cardiomyopathy [47] Zghaib, T., Te Riele, A.S.J.M., James, C.A. et al. Left ventricular fibro-fatty replacement in arrhythmogenic right ventricular dysplasia/cardiomyopathy:

prevalence, patterns, and association with arrhythmias [48]

Tribute to Nathaniel Reichek

Last year the SCMR and the greater CMR community lost one of our founding fathers. Dr. Nathaniel Reichek. Nat was a friend and a true giant in our field. He was literally "in the room" when the SCMR was founded, served as our 3rd president, was a 2017 recipient of the SCMR Gold Medal, and was a tireless advocate for the United States CMR Advocacy Committee. Last year, the SCMR named the Education and Research Fund in his honor. For my tenure as editor-in-chief, Nat was often my "go to" person for conflict-of-interest manuscripts or sounding board. His command of CMR was almost unparalleled, and he readily gave his time to help the *Journal* and all who inquired of his opinion. While we didn't agree on every issue, Nat was a gentleman of high integrity and I miss him at multiple levels. We published our first "In Memoriam" in his honor [21]. May his memory be a blessing.

BMC publisher

For the past 15 years, the *JCMR* has been published by BMC, part of Springer Nature and a pioneer of open access publishing. Our current five-year contract with BMC ends at the end of 2022 and the SCMR has embarked on a search for a publisher (may remain with BMC but yet to be determined). Our new editor-inchief, Tim Leiner is the chair of the committee and an RFP was recently distributed. A decision is expected by mid 2023. Regardless, the *Journal of Cardiovascular Magnetic Resonance, JCMR* moniker, and *Journal* contents are owned by the Society. The transition to a new publisher (if this occurs) at the end of 2023 will be seamless to you, our readership.

Manuscripts—WordCloud

As in last year's review, I chose to create a Wordcloud (https://www.wordclouds.com) of the 2020 and 2021 *JCMR* titles (Fig. 5). As in 2020, the most common JCMR manuscript title words were magnetic, cardio-vascular, resonance with 2021 followed by imaging, heart, ventricular and myocardial.

I hope you have found my closing annual "State of our *JCMR*" informative. I remain the captain until December 31, 2022, but as members of the *SCMR*, it is really your *Journal* for which I thank you for allowing me to provide stewardship. I close by again thanking the entire *JCMR* "village" for contributing to our success. Remember to also join us for our monthly *JCMR* Journal Club on the second Wednesday of the month at 11am ET!

Wishing you a happy, healthy, and safe 2023. We take great pride in the health care advances enabled by the ongoing advances in CMR. Remember to also take a deep breath every day to enjoy the moment.

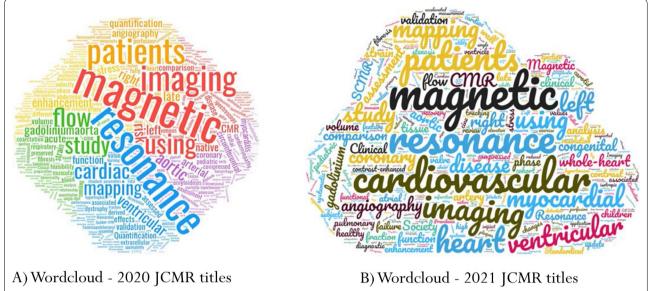


Fig. 5 WordCloud of (A) 2020 and (B) 2021 JCMR manuscript titles

Abbreviations

APC: Article processing charge; CME: Continuing medical education; JCMR: Journal of Cardiovascular Magnetic Resonance; SCMR: Society for Cardiovascular Magnetic Resonance.

Author contributions

WJM is solely responsible for the contents of this review. The JCMR. Twitter statistics were provided by Dr. Purvi Parwani on 12/10/2020. The author read and approved the final version of the manuscript.

Funding

WJM receives an annual stipend from BMC for his role as JCMR editor-in-chief.

Availability of data and materials

Data sharing not applicable to this article as no datasets were generated or analyzed.

Declarations

Ethics approval and consent to participate Not applicable.

Consent for publication

On request.

Competing interests

The author declares that they have no competing interests.

Received: 5 December 2022 Accepted: 14 December 2022 Published online: 31 December 2022

References

 Gorecka M, McCann GP, Berry C, Ferreira VM, Moon JC, Miller CA, Chiribiri A, Prasad S, Dweck MR, Bucciarelli-Ducci C, Dawson D, Fontana M, Macfarlane PW, McConnachie A, Neubauer S, Greenwood JP, COVID-HEART investigators. Demographic, multi-morbidity and genetic impact on myocardial involvement and its recovery from COVID-19: protocol design of COVID-HEART-a UK, multicentre, observational study. J Cardiovasc Magn Reson. 2021;23(1):77.

- Kim JY, Han K, Suh YJ. Prevalence of abnormal cardiovascular magnetic resonance findings in recovered patients from COVID-19: a systematic review and meta-analysis. J Cardiovasc Magn Reson. 2021;23(1):100.
- Webster G, Patel AB, Carr MR, Rigsby CK, Rychlik K, Rowley AH, Robinson JD. Cardiovascular magnetic resonance imaging in children after recovery from symptomatic COVID-19 or MIS-C: a prospective study. J Cardiovasc Magn Reson. 2021;23(1):86.
- 4. Aeschlimann FA, Misra N, Hussein T, Panaioli E, Soslow JH, Crum K, Steele JM, Huber S, Marcora S, Brambilla P, Jain S, Navallas M, Giuli V, Rücker B, Angst F, Patel MD, Azarine A, Caro-Domínguez P, Cavaliere A, Di Salvo G, Ferroni F, Agnoletti G, Bonnemains L, Martins D, Boddaert N, Wong J, Pushparajah K, Raimondi F. Myocardial involvement in children with post-COVID multisystem inflammatory syndrome: a cardiovascular magnetic resonance based multicenter international study-the CARDOVID registry. J Cardiovasc Magn Reson. 2021;23(1):140.
- Galea N, Marchitelli L, Pambianchi G, Catapano F, Cundari G, Birtolo LI, Maestrini V, Mancone M, Fedele F, Catalano C, Francone M. T2-mapping increase is the prevalent imaging biomarker of myocardial involvement in active COVID-19: a Cardiovascular Magnetic Resonance study. J Cardiovasc Magn Reson. 2021;23(1):68.
- Wang H, Li R, Zhou Z, Jiang H, Yan Z, Tao X, Li H, Xu L. Cardiac involvement in COVID-19 patients: mid-term follow up by cardiovascular magnetic resonance. J Cardiovasc Magn Reson. 2021;23(1):14.
- Clark DE, Dendy JM, Li DL, Crum K, Dixon D, George-Durrett K, Parikh AP, Wassenaar JW, Hughes SG, Soslow JH. Cardiovascular magnetic resonance evaluation of soldiers after recovery from symptomatic SARS-CoV-2 infection: a case-control study of cardiovascular postacute sequelae of SARS-CoV-2 infection (CV PASC). J Cardiovasc Magn Reson. 2021;23(1):106.
- Patel YR, Louis DW, Atalay M, Agarwal S, Shah NR. Cardiovascular magnetic resonance findings in young adult patients with acute myocarditis following mRNA COVID-19 vaccination: a case series. J Cardiovasc Magn Reson. 2021;23(1):101.
- 9. Manning WJ. 2021—state of our JCMR. J Cardiovasc Magn Reson. 2022;24(1):14.
- Elsayed A, Gilbert K, Scadeng M, Cowan BR, Pushparajah K, Young AA. Four-dimensional flow cardiovascular magnetic resonance in tetralogy of Fallot: a systematic review. J Cardiovasc Magn Reson. 2021;23(1):59.
- Holtackers RJ, Van De Heyning CM, Chiribiri A, Wildberger JE, Botnar RM, Kooi ME. Dark-blood late gadolinium enhancement cardiovascular magnetic resonance for improved detection of subendocardial scar: a review of current techniques. J Cardiovasc Magn Reson. 2021;23(1):96.

- Patel AR, Kelle S, Fontana M, Jacob R, Stojanovska J, Collins J, Patel HN, Francone M, Han Y, Bandettini WP, Bucciarelli-Ducci C, Raman S, Weissman G. SCMR level II/independent practitioner training guidelines for cardiovascular magnetic resonance: integration of a virtual training environment. J Cardiovasc Magn Reson. 2021;23(1):139.
- Uretsky S, Aggarwal N, van Heeswijk RB, Rajpal S, Rowin E, Taylor MD, Verjans JW, Wokhlu A, Markl M, Raman SV, Shah DJ. Standards for writing Society for Cardiovascular Magnetic Resonance (SCMR) endorsed guidelines, expert consensus, and recommendations: a report of the publications committee. J Cardiovasc Magn Reson. 2021;23(1):129.
- 14. Ordovas KG, Baldassarre LA, Bucciarelli-Ducci C, Carr J, Fernandes JL, Ferreira VM, Frank L, Mavrogeni S, Ntusi N, Ostenfeld E, Parwani P, Pepe A, Raman SV, Sakuma H, Schulz-Menger J, Sierra-Galan LM, Valente AM, Srichai MB. Cardiovascular magnetic resonance in women with cardiovascular disease: position statement from the Society for Cardiovascular Magnetic Resonance (SCMR). J Cardiovasc Magn Reson. 2021;23(1):52.
- 15. Johnson JN, Mandell JG, Christopher A, Olivieri LJ, Loke YH, Campbell MJ, Darty S, Kim HW, Clark DE, Frischhertz BP, Fish FA, Bailey AL, Mikolaj MB, Hughes SG, Oneugbu A, Chung J, Burdowski J, Marfatia R, Bi X, Craft J, Umairi RA, Kindi FA, Williams JL, Campbell MJ, Kharabish A, Gutierrez M, Arzanauskaite M, Ntouskou M, Ashwath ML, Robinson T, Chiang JB, Lee JCY, Lee MSH, Chen SSM. Society for cardiovascular magnetic resonance 2020 case of the week series. J Cardiovasc Magn Reson. 2021;23(1):108.
- Kim RJ, Simonetti OP, Westwood M, et al. Guidelines for training in cardiovascular magnetic resonance (CMR). J Cardiovasc Magn Reson. 2018;20(1):57.
- Pezel T, Unterseeh T, Garot P, Hovasse T, Kinnel M, Champagne S, Toupin S, Sanguineti F, Garot J. Prognostic value of vasodilator stress perfusion cardiovascular magnetic resonance after inconclusive stress testing. J Cardiovasc Magn Reson. 2021;23(1):89.
- Romero Daza A, Chokshi A, Pardo P, Maneiro N, Guijarro Contreras A, Larrañaga-Moreira JM, Ibañez B, Fuster V, Fernández Friera L, Solís J, Sanz J. Mitral valve prolapse morphofunctional features by cardiovascular magnetic resonance: more than just a valvular disease. J Cardiovasc Magn Reson. 2021;23(1):107.
- Bai W, Sinclair M, Tarroni G, et al. Automated cardiovascular magnetic resonance image analysis with fully convolutional networks. J Cardiovasc Magn Reson. 2018;20(1):65.
- 20. Rodríguez-Palomares JF, Dux-Santoy L, Guala A, et al. Aortic flow patterns and wall shear stress maps by 4D-flow cardiovascular magnetic resonance in the assessment of aortic dilatation in bicuspid aortic valve disease. J Cardiovasc Magn Reson. 2018;20(1):28.
- 21. Kramer CM, Ferrari V. In Memoriam, Nathaniel M. Reichek, MD, 1941–2021. J Cardiovasc Magn Reson. 2021;23(1):111.
- 22. Podlesnikar T, Pizarro G, Fernández-Jiménez R, et al. Left ventricular functional recovery of infarcted and remote myocardium after ST-segment elevation myocardial infarction (METOCARD-CNIC randomized clinical trial substudy). J Cardiovasc Magn Reson. 2020;22(1):44.
- 23. Pennig L, Lennartz S, Wagner A, et al. Clinical application of free-breathing 3D whole heart late gadolinium enhancement cardiovascular magnetic resonance with high isotropic spatial resolution using Compressed SENSE. J Cardiovasc Magn Reson. 2020;22(1):89.
- 24. Raphael CE, Mitchell F, Kanaganayagam GS, et al. Cardiovascular magnetic resonance predictors of heart failure in hypertrophic cardiomyopathy: the role of myocardial replacement fibrosis and the microcirculation. J Cardiovasc Magn Reson. 2021;23(1):26.
- 25. Pezel T, Unterseeh T, Kinnel M, et al. Long-term prognostic value of stress perfusion cardiovascular magnetic resonance in patients without known coronary artery disease. J Cardiovasc Magn Reson. 2021;23(1):43.
- Le TT, Ang BWY, Bryant JA, Chin CY, Yeo KK, Wong PEH, Ho KW, Tan JWC, Lee PT, Chin CWL, Cook SA. Multiparametric exercise stress cardiovascular magnetic resonance in the diagnosis of coronary artery disease: the EMPIRE trial. J Cardiovasc Magn Reson. 2021;23(1):17.
- Zhang Y, Mui D, Chirinos JA, Zamani P, Ferrari VA, Chen Y, Han Y. Comparing cardiovascular magnetic resonance strain software packages by their abilities to discriminate outcomes in patients with heart failure with preserved ejection fraction. J Cardiovasc Magn Reson. 2021;23(1):55.
- Meloni A, Martini N, Positano V, De Luca A, Pistoia L, Sbragi S, Spasiano A, Casini T, Bitti PP, Allò M, Sanna PMG, De Caterina R, Sinagra G, Pepe A. Myocardial iron overload by cardiovascular magnetic resonance native

segmental T1 mapping: a sensitive approach that correlates with cardiac complications. J Cardiovasc Magn Reson. 2021;23(1):70.

- Giusca S, Steen H, Montenbruck M, Patel AR, Pieske B, Erley J, Kelle S, Korosoglou G. Multi-parametric assessment of left ventricular hypertrophy using late gadolinium enhancement, T1 mapping and strainencoded cardiovascular magnetic resonance. J Cardiovasc Magn Reson. 2021;23(1):92.
- Nelsson A, Kanski M, Engblom H, et al. Pulmonary blood volume measured by cardiovascular magnetic resonance: influence of pulmonary transit time methods and left atrial volume. J Cardiovasc Magn Reson. 2021;23(1):123.
- Edelman RR, Leloudas N, Pang J, Koktzoglou I. Dark blood cardiovascular magnetic resonance of the heart, great vessels, and lungs using electrocardiographic-gated three-dimensional unbalanced steady-state free precession. J Cardiovasc Magn Reson. 2021;23(1):127.
- 32. Kato S, Fukui K, Kodama S, Azuma M, Nakayama N, Iwasawa T, Kimura K, Tamura K, Utsunomiya D. Cardiovascular magnetic resonance assessment of coronary flow reserve improves risk stratification in heart failure with preserved ejection fraction. J Cardiovasc Magn Reson. 2021;23(1):112.
- Pezel T, Unterseeh T, Garot P, et al. Prognostic value of vasodilator stress perfusion cardiovascular magnetic resonance after inconclusive stress testing. J Cardiovasc Magn Reson. 2021;23(1):89.
- 34. van Cauteren YJM, Smulders MW, Theunissen RALJ, Gerretsen SC, Adriaans BP, Bijvoet GP, Mingels AMA, van Kuijk SMJ, Schalla S, Crijns HJGM, Kim RJ, Wildberger JE, Heijman J, Bekkers SCAM. Cardiovascular magnetic resonance accurately detects obstructive coronary artery disease in suspected non-ST elevation myocardial infarction: a sub-analysis of the CARMENTA Trial. J Cardiovasc Magn Reson. 2021;23(1):40.
- 35. Marlevi D, Sotelo JA, Grogan-Kaylor R, Ahmed Y, Uribe S, Patel HJ, Edelman ER, Nordsletten DA, Burris NS. False lumen pressure estimation in type B aortic dissection using 4D flow cardiovascular magnetic resonance: comparisons with aortic growth. J Cardiovasc Magn Reson. 2021;23(1):51.
- 36. Hajhosseiny R, Rashid I, Bustin A, Munoz C, Cruz G, Nazir MS, Grigoryan K, Ismail TF, Preston R, Neji R, Kunze K, Razavi R, Chiribiri A, Masci PG, Rajani R, Prieto C, Botnar RM. Clinical comparison of sub-mm high-resolution non-contrast coronary CMR angiography against coronary CT angiography in patients with low-intermediate risk of coronary artery disease: a single center trial. J Cardiovasc Magn Reson. 2021;23(1):57.
- Nakamura S, Ishida M, Nakata K, Ichikawa Y, Takase S, Takafuji M, Ito H, Nakamori S, Kurita T, Dohi K, Sakuma H. Long-term prognostic value of whole-heart coronary magnetic resonance angiography. J Cardiovasc Magn Reson. 2021;23(1):56.
- Gupta AN, Avery R, Soulat G, Allen BD, Collins JD, Choudhury L, Bonow RO, Carr J, Markl M, Elbaz MSM. Direct mitral regurgitation quantification in hypertrophic cardiomyopathy using 4D flow CMR jet tracking: evaluation in comparison to conventional CMR. J Cardiovasc Magn Reson. 2021;23(1):138.
- Hopman LHGA, Mulder MJ, van der Laan AM, Demirkiran A, Bhagirath P, van Rossum AC, Allaart CP, Götte MJW. Impaired left atrial reservoir and conduit strain in patients with atrial fibrillation and extensive left atrial fibrosis. J Cardiovasc Magn Reson. 2021;23(1):131.
- Jordan AN, Fulford J, Gooding K, Anning C, Wilkes L, Ball C, Pamphilon N, Mawson D, Clark CE, Shore AC, Sharp ASP, Bellenger NG. Morphological and functional cardiac consequences of rapid hypertension treatment: a cohort study. J Cardiovasc Magn Reson. 2021;23(1):122.
- Kato S, Fukui K, Kodama S, Azuma M, Nakayama N, Iwasawa T, Kimura K, Tamura K, Utsunomiya D. Prognostic value of resting coronary sinus flow determined by phase-contrast cine cardiovascular magnetic resonance in patients with known or suspected coronary artery disease. J Cardiovasc Magn Reson. 2021;23(1):97.
- 42. Rankin AJ, Mangion K, Lees JS, Rutherford E, Gillis KA, Edy E, Dymock L, Treibel TA, Radjenovic A, Patel RK, Berry C, Roditi G, Mark PB. Myocardial changes on 3T cardiovascular magnetic resonance imaging in response to haemodialysis with fluid removal. J Cardiovasc Magn Reson. 2021;23(1):125.
- 43. Edy E, Rankin AJ, Lees JS, Barrientos PH, Woodward R, Stoumpos S, Koktzoglou I, Edelman RR, Radjenovic A, Mark PB, Roditi GH. Cardiovascular magnetic resonance for the detection of descending thoracic aorta calcification in patients with end-stage renal disease. J Cardiovasc Magn Reson. 2021;23(1):85.
- 44. Li S, He J, Xu J, Zhuang B, Wu B, Wei B, Huang J, Yin G, Chen X, Zhu Z, Wang H, Zhao S, Lu M. Patients who do not fulfill criteria for hypertrophic cardiomyopathy but have unexplained giant T-wave inversion: a

cardiovascular magnetic resonance mid-term follow-up study. J Cardiovasc Magn Reson. 2021;23(1):67.

- Loke YH, Capuano F, Cleveland V, Mandell JG, Balaras E, Olivieri LJ. Moving beyond size: vorticity and energy loss are correlated with right ventricular dysfunction and exercise intolerance in repaired Tetralogy of Fallot. J Cardiovasc Magn Reson. 2021;23(1):98.
- 46. Seraphim A, Knott KD, Beirne AM, Augusto JB, Menacho K, Artico J, Joy G, Hughes R, Bhuva AN, Torii R, Xue H, Treibel TA, Davies R, Moon JC, Jones DA, Kellman P, Manisty C. Use of quantitative cardiovascular magnetic resonance myocardial perfusion mapping for characterization of ischemia in patients with left internal mammary coronary artery bypass grafts. J Cardiovasc Magn Reson. 2021;23(1):82.
- 47. Thompson EW, Kamesh Iyer S, Solomon MP, Li Z, Zhang Q, Piechnik S, Werys K, Swago S, Moon BF, Rodgers ZB, Hall A, Kumar R, Reza N, Kim J, Jamil A, Desjardins B, Litt H, Owens A, Witschey WRT, Han Y. Endogenous T1p cardiovascular magnetic resonance in hypertrophic cardiomyopathy. J Cardiovasc Magn Reson. 2021;23(1):120.
- Zghaib T, Te Riele ASJM, James CA, Rastegar N, Murray B, Tichnell C, Halushka MK, Bluemke DA, Tandri H, Calkins H, Kamel IR, Zimmerman SL. Left ventricular fibro-fatty replacement in arrhythmogenic right ventricular dysplasia/cardiomyopathy: prevalence, patterns, and association with arrhythmias. J Cardiovasc Magn Reson. 2021;23(1):58.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.