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Abstract 

Background Cine Displacement Encoding with Stimulated Echoes (DENSE) facilitates the quantification of myocar‑
dial deformation, by encoding tissue displacements in the cardiovascular magnetic resonance (CMR) image phase, 
from which myocardial strain can be estimated with high accuracy and reproducibility. Current methods for analyz‑
ing DENSE images still heavily rely on user input, making this process time‑consuming and subject to inter‑observer 
variability. The present study sought to develop a spatio‑temporal deep learning model for segmentation of the left‑
ventricular (LV) myocardium, as spatial networks often fail due to contrast‑related properties of DENSE images.

Methods 2D + time nnU‑Net‑based models have been trained to segment the LV myocardium from DENSE mag‑
nitude data in short‑ and long‑axis images. A dataset of 360 short‑axis and 124 long‑axis slices was used to train the 
networks, from a combination of healthy subjects and patients with various conditions (hypertrophic and dilated 
cardiomyopathy, myocardial infarction, myocarditis). Segmentation performance was evaluated using ground‑truth 
manual labels, and a strain analysis using conventional methods was performed to assess strain agreement with 
manual segmentation. Additional validation was performed using an externally acquired dataset to compare the 
inter‑ and intra‑scanner reproducibility with respect to conventional methods.

Results Spatio‑temporal models gave consistent segmentation performance throughout the cine sequence, while 
2D architectures often failed to segment end‑diastolic frames due to the limited blood‑to‑myocardium contrast. Our 
models achieved a DICE score of 0.83 ± 0.05 and a Hausdorff distance of 4.0 ± 1.1 mm for short‑axis segmentation, 
and 0.82 ± 0.03 and 7.9 ± 3.9 mm respectively for long‑axis segmentations. Strain measurements obtained from auto‑
matically estimated myocardial contours showed good to excellent agreement with manual pipelines, and remained 
within the limits of inter‑user variability estimated in previous studies.

Conclusion Spatio‑temporal deep learning shows increased robustness for the segmentation of cine DENSE images. 
It provides excellent agreement with manual segmentation for strain extraction. Deep learning will facilitate the 
analysis of DENSE data, bringing it one step closer to clinical routine.
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Background
Myocardial deformation holds important diagnosis 
and prognosis value for the assessment of heart condi-
tions [45], which remains one of the largest causes of 
death worldwide [5]. In particular, myocardial strain 
provides significant added value compared to the left 
ventricular (LV) ejection fraction (LVEF) [41, 52]. LVEF 
is a ubiquitous biomarker for the assessment of cardiac 
conditions, but is limiting when we need to understand 
underlying mechanisms, and cannot provide regional 
information [2, 30, 57]. A normal LVEF can mask car-
diac dysfunction and lead to missed or delayed detec-
tion of disease. Myocardial strain has been shown to be 
particularly useful for the diagnosis of congenital heart 
diseases [9] and prediction of cardiac function after 
repair [24, 53], while severe regional strain impairment 
correlates with myocardial infarction (MI; [10, 34, 35]. 
Strain assessment also has added value for diagnosis 
[15, 36, 46] and prognosis [38] of cardiomyopathies, 
and is being recommended for cardiotoxicity analysis 
after cancer treatment [17, 40, 51, 55]. More recently, 
the assessment of myocardial strain is recommended in 
international guidelines for the care of cardio-oncology 
patients [32].

While myocardial strain can be estimated from a 
range of modalities and acquisition protocols, cardio-
vascular magnetic resonance (CMR), and in particular 
cine displacement encoding with stimulated echoes 
(DENSE) imaging, is a promising technique for strain 
assessment [1, 29, 64], and has been shown highly 
reproducible [60]. The adoption of echocardiogra-
phy-based methods, like tissue Doppler imaging and 
speckle tracking, can be limited due to the need for 
highly trained operators [8]. Other CMR techniques, 
like tissue tagging and phase-velocity encoding, have 
also shown some limitations in their ability to provide 
accurate strain estimation with high spatial resolution 
[1, 20]. Feature tracking CMR using standard cines 
does not reliably quantify regional strain [56].

The application of DENSE to clinical pipelines is 
limited by the lack of automation for the extraction of 
myocardial strain. Current tools like DENSEanalysis 
[12, 47] require significant human interaction in con-
touring the LV epicardial and endocardial borders. In 
DENSE images, displacement information is encoded 
in the image phase, and while the most advanced algo-
rithms are able to automatically unwrap the phase and 
extract Lagrangian strain from pixel displacements, 
these steps generally still require human adjustments, 

either to select specific hyper-parameters or guide 
phase-unwrapping by selecting seed points in non-
wrapped areas of the phase.

The use of deep learning (DL) for cardiovascular 
imaging, and in particular convolutional neural net-
works, has been significantly increasing in the past 
years. These models are being used extensively for CMR 
segmentation [22, 28, 42, 43, 61, 61]. Recently, nnU-
Net was presented by Isensee et  al. [21] which builds 
on U-Net, the segmentation model developed by Ron-
neberger et al. [44] in 2015. Strategies were developed 
in nnU-Net to improve the performance of U-Net for 
a highly diverse range of medical image segmentation 
tasks, and it has been widely adopted as a benchmark 
method. nnU-Net optimizes some hyper-parameters 
used in training U-Net models, either empirically, or 
on a task-by-task basis given the characteristics of a 
given dataset. Data augmentation is also performed 
with a wide range of transformations, while the infer-
ence performance is boosted by implementing test-
time augmentation strategies. Additionally, there is 
an emergence of DL methods for automated cardiac 
motion analysis [4, 31, 43, 59]. However, there are few 
studies related to DENSE imaging for post process-
ing. Recently, Ghadimi et  al. [11] showed, using basic 
2D U-Net models, very promising results for automatic 
segmentation and extraction of strain from short-axis 
DENSE acquisitions. However, these 2D method pro-
cessed each frame independently, so temporal coher-
ence, T1 relaxation and blood flow through the slice 
were not incorporated, which can make segmentation 
of the first and last frames difficult due to lack of con-
trast. Also, only short-axis analyses were performed. 
Kar et al. [27] showed how this could be achieved using 
2D deep CNNs, but exhibit the same limitations.

In this study, we explore the use of DL to automate 
the segmentation of LV myocardial short and long-
axis DENSE images. In particular, we show how tem-
poral redundancies in cine sequences (2D + time) can 
be leveraged to improve segmentation performance 
and coherence. The nnU-Net pipeline was extended in 
this work under the MONAI framework [37] to create 
models that can easily be integrated into scanner plat-
forms and clinical pipelines. Models are validated by 
comparing segmentation maps to ground-truth manual 
contouring, both in internal and external test data-
sets. Further validation is performed by automatically 
extracting Lagrangian displacement and strain val-
ues, and quantifying variability in relation to previous 
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studies [3]. To this purpose, we extended the DENSE-
analysis Matlab tool ([12], Mathworks, Natick, Mas-
sachusetts, USA) to be able to automatically analyze 
studies with minimal interaction using the automated 
contours as input.

Methods
Study population
DENSE CMR examinations were obtained according to 
local ethical approvals with informed consent at the Royal 
Brompton Hospital in London, UK as part of a number 
of research studies [3, 16, 50]. Between April 2014 and 
August 2021, 260 subjects have been scanned at 3T (MAG-
NETOM Skyra and MAGNETOM Vida, Siemens Health-
ineers, Erlangen, Germany). The cohort study includes 
healthy subjects and patients affected by various cardiac 
conditions, including acute and chronic MI, dilated cardio-
myopathy (DCM), hypertrophic cardiomyopathy (HCM), 
myocarditis, recovered DCM patients, and sickle cell. This 
is the primary dataset used in this study to train our mod-
els but also from which we extracted our main independ-
ent test set to validate the results. A second dataset was 
acquired at King’s College London in 2020 from healthy 
subjects, and is used in this study to study domain adapta-
tion and further validate the results. Subjects were scanned 

at 1.5T and 3T (respectively on MR-PET Biograph mMR 
and MAGNETOM Aera, Siemens Healthineers). All data 
were anonymized on the hospital systems before further 
analysis. Demographic data can be found on Table 1.

DENSE imaging protocol and image analysis
A prototype spiral cine DENSE sequence [49, 64] was used 
to acquire short-axis and long-axis images. Between one 
and three short-axis planes (basal, mid and apical) were 
acquired, along with up to three long-axis planes (two, 
three and four-chamber views). The following typical 
acquisition parameters were used: encoding frequency of 
0.1 cycles/mm, simple three-point encoding providing 2D 
in-plane displacements [29, 63], through-plane dephasing 
of 0.08 cycles/mm, 4 spiral interleaves with a spiral readout 
duration of 5.5 ms providing an acquired spatial resolution 
of 3.4 mm in-plane, reconstructed onto a 128× 128 image 
matrix, slice thickness of 8 mm, repetition time of 15 ms, 
echo time of 1 ms, variable flip angle increasing to a maxi-
mum of 15° in the final frames, two spiral interleaves per 
frame per heartbeat acquired to give 30 ms temporal reso-
lution, breath-hold acquisition over 14 cardiac cycles. Part 
of the dataset was acquired with outer volume suppres-
sion, resulting in four different fields of view: 200 mm [3], 
120 mm, 224 mm and 360 mm [49].

DENSE images were analyzed by human observers using 
the open-source DENSEanalysis Matlab tool (Mathworks; 
[12]), with different subsets of the dataset being analyzed 
by different observers. The LV myocardium was semi-auto-
matically segmented using motion-guided segmentation 
[48], to propagate LV contours from a single frame to the 
rest of the DENSE cine images, followed by manual cor-
rection if needed (every case, and almost every frame in 
each case, required at least minimal adjustment). A phase-
unwrapping algorithm (spatiotemporal quality-guided path 
following) was then performed on the myocardial pixels, 
and Langrangian displacement and strain values were cal-
culated by DENSEanalysis, as described in [47]. Circum-
ferential (Ecc) and radial (Err) strain components were 
extracted for short-axis images, while Ell and Err strain 
components were extracted for long-axis images. DENSE 
images from a healthy subject and the processing pipeline 
steps are illustrated on Fig. 1.

Table 1 Study cohort

F Female, M Male, DCM Dilated Cardiomyopathy, HCM Hypertrophic 
Cardiomyopathy, MI Myocardial Infarction, O Other

Primary cohort Secondary cohort

Subjects N = 260 N = 11

Exams 382 31

Age at scan (y) 48.9 ± 14.9 32.9 ± 8.0

Sex (F/M/O) 69/190/1 4/7/0

Weight (kg) 81.5 ± 18.4 73.4 ± 15.8

Height (cm) 174 ± 11 173 ± 9

Healthy 57 11

Acute MI 40 0

DCM 59 0

HCM 13 0

Myocarditis 36 0

Recovered DCM 53 0

Sickle cell 1 0

Chronic MI 1 0

Fig. 1 Illustration of the processing pipeline. The first step (orange box) is the segmentation of the left‑ventricular (LV) myocardium. It is done 
manually with DENSEanalysis to obtain training labels, and replaced with a fully automated deep learning (DL) model in this work. Example shown 
here of an end‑systolic short‑axis magnitude frame (respectively long‑axis) for a healthy subject (A, respectively C) and corresponding ground‑truth 
manual contours (B, respectively D). Lagrangian displacement (E, respectively J) and circumferential (Ecc)/radial (Err)/longitudinal (Ell) strain 
components (F/H, respectively K/M) are then calculated and strain time curves produced (G/I, respectively L/N)

(See figure on next page.)
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Fig. 1 (See legend on previous page.)



Page 5 of 17Barbaroux et al. Journal of Cardiovascular Magnetic Resonance           (2023) 25:16  

Image and label quality control
In order to assess the quality of the images for train-
ing and the corresponding manual LV segmentation, an 
application was created in Python with a Graphical User 
Interface (GUI) to rapidly show the available images and 
allow rejection when quality is impaired or manual seg-
mentation appears to insufficiently track the LV epi- and 
endocardium. An overview of the GUI can be found in 
Additional file 1: Fig. S1.

Segmentation models and training
After quality control, the dataset was reduced to 360 
short-axis and 124 long-axis slices (from 220 subjects). 
In each case, approximately 80% of the data (split by 
patient) was used for training, while 20% was left as an 
independent test set for performance assessment. All 
models were trained using a fourfold cross-validation 
(CV) on the training set, and the CV performance was 
used to optimise the networks. The CV folds were care-
fully engineered to maintain the dataset pathology dis-
tributions between folds. As some subjects were scanned 
multiple times in follow-up visits, all slices from a single 
subject were included in the same fold to prevent over-
fitting (also for the 20% performance testing dataset). A 
summary of the folds can be found in Tables 2 and 3 (for 
short-axis and long-axis datasets respectively).

Automated segmentation of the LV myocardium from 
DENSE magnitude images was performed using nnU-
Net with the manual segmentations from DENSEanaly-
sis used as the ground truth. For this purpose, manual 
LV floating-point contours were converted into binary 
masks. Two nnU-Net architectures have been trained 
for this study: one with a 2D network, where DENSE 
frames are individually processed, and the other 
with a 2D + time network, where the cine sequences 
are stacked into a 3D volume and processed by a 3D 
network.

The nnU-Net pipeline has many automated features 
around its core model training. However, it offers lim-
ited options for export and portability, can be difficult 
to customize, and is challenging to deploy on scan-
ners where Python environments are not available. 
We re-implemented and simplified nnU-Net using the 
MONAI library [37], based on the DynU-Net imple-
mentation. This allowed us to easily extract the trained 
networks for use in inference on other platforms. In 
this study, we also validated the performance of our 
MONAI pipeline implementation with regard to the 
original nnU-Net pipeline. Architecture and implemen-
tation details can be found in Additional file 1: Fig. S3.

Table 2 Fold split statistics for short‑axis data. The total number of exams is different than the number of subjects as cases might have 
been rejected by quality‑control checks and subjects might have undergone follow‑up scans

M Male, F Female, O Other. MCD Myocarditis, DCM Dilated cardiomyopathy, RDCM Recovered DCM, MI Acute myocardial infarction, HCM Hypertrophic 
cardiomyopathy, Sickle Sickle cell

# # Sex Physical characteristics Disease types

exams slices M F O Height(cm) Weight(kg) Age(years) MCD Healthy RDCM DCM MI HCM Sickle

1 54 83 38 16 0 174±10 80.3±17.0 46.5±15.2 6 13 15 10 8 2 0

2 50 72 32 18 0 171±14 84.4±19.1 54.4±13.0 3 11 16 10 8 2 0

3 47 62 35 12 0 176±11 82.0±19.7 51.4±12.5 4 11 13 10 8 1 0

4 47 60 32 15 0 173±10 81.1±19.5 47.7±11.8 5 10 12 10 8 2 0

Test 53 83 37 15 1 174±11 80.1±18.6 48.0±13.2 5 12 15 10 8 2 1

Table 3 Fold split statistics for long‑axis data. The total number of exams is different than the number of subjects as cases might have 
been rejected by quality‑control checks and subjects might have undergone follow‑up scans

2ch Two-chamber, 3ch Three-chamber, 4ch Four-chamber. M Male, F Female. MCD Myocarditis, DCM Dilated cardiomyopathy, RDCM Recovered DCM, MI Acute 
myocardial infarction, HCM Hypertrophic cardiomyopathy, CMI Chronic myocardial infarction

# # slices Sex Physical characteristics Disease types

Exams 2ch 3ch 4ch M F Height(cm) Weight(kg) Age(years) MCD Healthy RDCM DCM HCM CMI

1 23 6 1 18 17 6 177±10 78.7±20.4 48.8±13.0 3 9 9 2 0 0

2 21 5 2 19 12 9 172±13 81.3±19.8 45.2±11.6 2 8 9 2 0 0

3 20 7 2 14 13 7 174±12 84.7±18.1 51.1±13.2 3 6 9 2 0 0

4 21 9 2 14 15 6 170±17 78.9±19.7 46.9±14.6 3 9 7 2 0 0

Test 21 9 2 14 15 6 174±10 83.0±21.7 48.0±16.1 2 7 9 1 1 1
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Strain analysis
After the DENSE images in the test sets were automati-
cally segmented using the trained DL networks, the 
segmentation masks were converted into contours and 
loaded on DENSEanalysis. The ground-truth manual 
contours obtained with DENSEanalysis are floating-
point contours, which cannot be obtained from pixel 
masks as provided by the network. As a result these 
manual contours were transformed into pixel masks 
and converted to pixel contours to imitate the post-
processing step applied to the automated segmenta-
tions. This step removes any systematic error which 
may be introduced by comparing the strain results 
obtained from floating-point contours to those from 
pixel masks, allowing an analysis of the underlying dif-
ferences between manually vs. automatically segment-
ing the LV myocardium. An analysis of the impact of 
using pixel contours instead of floating-point ones can 
be found in Additional file 1: Fig. S2.

Next, Lagrangian strain and displacement were calcu-
lated from the phase images for both ground-truth and 
DL-based automatic segmentations. For that purpose, 
the DENSEanalysis tool was modified to allow semi-
automatic processing, allowing analysis of the cases in 
the test sets in under 30  s per case. The modifications 
were as follows: loading the cases in DENSEanalysis and 
exporting the data after analysis was made automatic; 
the manual selection of seed points for phase unwrap-
ping was accelerated by initially positioning points at 
standardized locations in the cine DENSE dataset; the 
temporal fitting model (10th-order polynomial) and spa-
tial smoothing (0.9) parameters were pre-set; most GUI 
interactions were removed. The user only needs to adjust 
the seed points if need be, which happened in a minority 
of cases (5%), and adjust the right-ventricular (RV) inser-
tion points for short-axis slices.

Finally, strain results obtained from ground-truth 
manual contours and automated segmentation were 
compared. To evaluate these results, Bland–Altman 
analyses were performed, and the reproducibility meas-
ures coefficient of variation (CoV) and intra-class cor-
relation coefficient (ICC) were calculated between the 
peak strain results obtained from the automated and 
manual ground-truth contours. As defined in the recent 
multi-center DENSE reproducibility study [3], agree-
ment between strains from the manual and automated 
contours is considered excellent for CoV ≤ 10% , good for 
10% < CoV ≤ 20% , fair for 20% < CoV ≤ 40% , and poor 
for CoV > 40% . Similarly, agreement is considered excel-
lent for ICC ≥ 0.74 , good for 0.6 < ICC ≤ 0.74 , fair for 
0.4 < ICC ≤ 0.6 , and poor for ICC < 0.4 . Ecc and Err 
were calculated for short-axis images, while Ell and Err 
were for long-axis ones.

Generalisation and reproducibility analysis
To assess the performance of the automated segmenta-
tion and the potential of automated segmentation as a 
method to reduce one contributing factor to inter-scan 
variability of DENSE-derived strain measures, the pipe-
line described above was tested on a second test set 
acquired at a second center (see Study Population sec-
tion). Subjects were scanned on two different scanners, 
allowing for an assessment of the inter-scanner variability 
analysis. On each scanner, subjects were scanned twice, 
after repositioning inside the scanner, which allowed for 
analyzing inter-scan variability. 45 short-axis slices were 
manually segmented using DENSEanalysis, and were 
used to assess the performance of our 2D + time DynU-
Net. In this work, we also compare the variability in 
measuring strain when the data was manually segmented 
or automatically estimated with DL.

Statistics
Model performance was assessed using Dice score and 
Hausdorff distance (HD) between the automated seg-
mentation and the manual ground-truth. Dice and HD 
are generally well-suited metrics for assessing semantic 
segmentation. More importantly, HD is independent of 
commonly used training loss measures. As a boundary-
based metric, it provides a distance-based penalization 
of inferred structures (particularly relevant for long-axis 
shapes). It is also highly sensitive to outliers, as it is a meas-
ure of maximum error [33]. Two-tailed paired Student 
t-tests were performed with a significance level of p = 0.01, 
or Wilcoxon tests when the normality assumption did not 
hold. Statistical analyses were performed using Python 
(version 3.9, Python Software Foundation, Wilmington, 
Delaware, USA) with Scipy library (version 1.7.1).

Results
2D + time analysis
We evaluated the performance of the two nnU-Net archi-
tectures on the first test set, frame by frame. As Fig.  2 
shows, the performance of the 2D models on end-dias-
tolic frames drops substantially with respect to the rest 
of the cardiac cycle, which is greatly mitigated when 
using the 2D + time models. The latter have a signifi-
cantly improved Dice (p < 10

−11 ) and Hausdorff distance 
(p < 10

−15 ) at end-diastole. Figure  3 shows typical seg-
mentation results for end-diastolic frames, and illustrates 
how segmentation can be severely impaired when using 
2D models.

The short-axis 2D architecture achieved a mean 
Dice score of 0.82 ± 0.05 and Hausdorff distance of 
4.1 ± 1.0 mm over the whole test set, while the 2D + time 
architecture outperformed the 2D architecture with 
a Dice score of 0.84 ± 0.04 (p < 10

−9 ) and Hausdorff 
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distance of 3.8 ± 1.0  mm (p < 10
−7 ). Respectively, the 

long-axis models achieved a Dice score of 0.81 ± 0.03 
and 0.82 ± 0.03 (p < 0.002 ), and a Hausdorff distance of 
8.2 ± 4.0 mm and 7.5 ± 3.3 mm (p > 0.01 ). All the metrics 
are provided in Table 4.

Segmentation results
2D + time DynU-Net segmentation inference on an inde-
pendent test-set of 83 short-axis and 25 long-axis slices 
achieved a DICE score of 0.83 ± 0.05 and a Hausdorff dis-
tance of 4.0 ± 1.1  mm for the short-axis and 0.82 ± 0.03 
and 7.9 ± 3.9 mm respectively for the long axis. This led 
to a similar segmentation performance to the original 
nnU-Net implementation, with no statistical difference 
for LAx models (p > 0.01 for Dice and Hausdorff dis-
tance on the overall test set) and a minor difference for 
SAx models (p < 0.003 ). Additional precision and sensi-
tivity measures can be found in Table 5. Figure 4 shows 
segmentation results from both LAx andSAx test sets. 

The training time was reduced by a factor 4 compared 
to the nnU-Net framework, reducing this time from 83 
to 21 h for fourfold CV training on the SAx dataset, and 
respectively from 51.5 h to 13 h for LAx. GPU inference 
was achieved in under 1  s for every case, compared to 
up to 30  min required to define contours with manual 
segmentation.

Strain analysis
After using the 2D + time DynU-Net architecture for 
extracting LV myocardium segmentations, inference 
results were processed using the described semi-auto-
matic version of DENSEanalysis to extract Lagrangian 
strain and displacement values. Figure  5 shows typical 
examples of strain maps obtained either from manual or 
automated myocardial segmentation. To analyze these 
results, we compared peak strains calculated from strain 
time curves averaged over the whole LV myocardium in 
a slice to equivalent values obtained from a conventional 
pipeline with manual segmentation. Bland–Altman plots 

Fig. 2: 2D vs 2D + time nnU‑Net performance. Performance metrics over the cardiac cycle, aggregated over an independent test set. Time was 
normalized to represent systole between 0 and 0.5 and diastole between 0.5 and 1. Area: interquartile range. Dark line: median
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drawn from the test set results can be seen in Fig. 6. The 
bias was 0.00 for the SAx Ecc, with limits of agreement 
(± 1.96 SD) of -0.029 to 0.025, and respectively 0.02 and 
-0.11 to 0.068 for Err. The bias was 0.00 for the LAx Ell, 
with limits of agreement of -0.03 to 0.02, and respectively 

0.01 and -0.081 to 0.054 for Err. We also computed CoV 
and ICC values to assess reproducibility between man-
ual and automated analysis. As can be seen in Table  6, 
ICCs were considered excellent for all four strain analy-
ses (0.95, 0.90, 0.91, 0.87 respectively for SAx Ecc, SAx 
Err,  Ell, LAx Err). The CoV showed slightly different 
results, with an excellent CoV for Ecc and Ell (resp. 7.2% 
and 7.7%), while being considered fair for Err (21.2% and 
24.6% for SAx and LAx datasets respectively).

Additionally, a transmural gradient in peak Ecc meas-
ured from short-axis views was reproduced by the DynU-
Net model (p = 0.054 ): the average subendocardial Ecc 
was −0.157± 0.040 and −0.157± 0.042 respectively 
for the automated and the ground-truth segmenta-
tion (p = 0.763 ), and the average subepicardial Ecc was 
−0.123± 0.035 and −0.125± 0.035 (p = 0.030).

Generalization and reproducibility analysis
Our pipeline was tested on the second SAx independ-
ent test set, which was acquired in a different center 
(described in the methods). The 2D + time DynU-Net 
model achieved a Dice score of 0.84 ± 0.04 a Hausdorff 
distance of 4.2 ± 1.3 mm, averaged over all 45 SAx slices 
(from both 3T and 1.5T scanners).

Fig. 3 Segmentation inference examples, 2D vs 2D + time nnU‑Net. Examples of end‑diastolic short‑axis (SAx) and long‑axis (LAx) segmentation 
results on cases from an independent test set. For each case, 2D (middle column) and 2D + time (right column) segmentation maps are compared. 
The left column shows the corresponding end‑systolic frame, showing better blood‑to‑myocardium contrast

Table 4 Segmentation result metrics on independent test‑sets, 
from nnU‑Net architectures (2D and 2D + time)

SAx Short-axis. LAx Long-axis. HD Hausdorff distance

DICE HD (mm) Precision Sensitivity

SAx 2D 0.82 ± 0.05 4.1 ± 1.0 0.82 ± 0.08 0.84 ± 0.07

2D + t 0.84 ± 0.04 3.8 ± 1.0 0.83 ± 0.08 0.86 ± 0.07

LAx 2D 0.81 ± 0.03 8.2 ± 4.0 0.83 ± 0.07 0.80 ± 0.07

2D + t 0.82 ± 0.03 7.5 ± 3.3 0.83 ± 0.08 0.83 ± 0.06

Table 5 2D + time segmentation result metrics on independent 
test‑sets

SAx Short-axis. LAx Long-axis. HD Hausdorff distance

DICE HD (mm) Precision Sensitivity

SAx nnU‑Net 0.84 ± 0.04 3.8 ± 1.0 0.83 ± 0.08 0.86 ± 0.07

DynU‑Net 0.83 ± 0.05 4.0 ± 1.1 0.82 ± 0.08 0.86 ± 0.07

LAx nnU‑Net 0.82 ± 0.03 7.5 ± 3.3 0.83 ± 0.08 0.83 ± 0.06

DynU‑Net 0.82 ± 0.03 7.9 ± 3.9 0.82 ± 0.07 0.82 ± 0.05
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After segmentation, images were processed in the 
same way as the original test set, to produce strain 
results and provide an analysis of the agreement 
between manual and automated segmentation. Bland–
Altman plots can be see on Fig.  7. Bias and limits 
of agreement were 0.0 and −  0.022 to 0.021 for Ecc, 
respectively 0.07 and -0.023 to 0.15 for Err. As shown 
in Table 7, ICC was considered excellent for Ecc (0.92) 
and Err (0.85), while CoV was considered excellent for 
Ecc (4.2%) and poor for Err (47.0%).

With this second dataset, we also analyzed the effect 
of the automated segmentation on the intra-scanner 
variability and inter-scanner variability, as mid SAx 
slices were acquired from multiple subjects on both 
a 1.5T and a 3T CMR scanner, with repeated scans. 
Reproducibility analysis of strain values can be found in 
Fig. 8.

Discussion
We trained 2D and 2D + time nnU-Net models to seg-
ment the LV myocardium from DENSE magnitude 
images, training separate models for SAx and LAx 
datasets. 2D + time architectures were found to lever-
age temporal redundancies and remove segmentation 
artifacts over more simplistic 2D approaches. We re-
implemented and simplified the nnU-Net framework 
using the MONAI library, based on the DynU-Net 
architecture. 2D + time DynU-Net models were success-
fully validated as they showed, when used in a complete 
pipeline to calculate Lagrangian strain, good agreement 
with manual analysis. The DENSEanalysis MATLAB 
tool was extended to automatically analyze full datasets 
with reduced processing time and minimal user interac-
tion (from several minutes of manual processing, exclud-
ing segmentation, to less than 30 s). The modification of 
DENSEanalysis is a critical aspect of this study, as it can 
be used for further studies, even for standard manual 
processing. The generalizability of the models was vali-
dated by analyzing a second test set acquired from a dif-
ferent center and scan-rescan variability was quantified 
in multiple scanners.

In our work, we noticed that training 2D architectures 
based on individual frames only was sub-optimal. With 
cine DENSE, frames have decreasing contrast and bright-
ness at later times in the cardiac cycle due to T1 recovery. 
While the inherent variability from this loss of contrast 
makes it harder for a network to perform well, its impact 
can be mitigated by implementing data augmentation 
with intensity-based transforms. However, the effects 
of other artifacts cannot be mitigated in this way. Early 
cine DENSE frames have poor contrast between blood 
and myocardium as the blood has not yet left the imaging 
slice and spiral streaking artifacts (sometimes rather sub-
stantial) may also be present in these frames. As a conse-
quence, 2D networks frequently fail in the initial frames 
(see Fig. 3). Additionally, there is a significant reduction 
in myocardial signal over the cardiac cycle (p < 10

−67 
between mean LV myocardial signal in frame 1 vs mid-
frame, and p < 10

−113 for mid frame vs last frame), which 
further motivates the use of temporal networks.

Using 2D + time architectures enables the networks to 
leverage temporal redundancies in the image series. As 
we can see in Table 4, this first leads to a slight increase 
in average performance. More interestingly, we noticed 
that the cases noted above, where 2D segmentation fails 
on the early frames, are generally well segmented by the 
2D + t architectures, as can be seen in Fig. 3. This trend 
over the cardiac cycle is shown in Fig. 2. While the blood-
to-myocardium contrast is poor as expressed above, the 
2D + time nnU-Net model is able to more accurately pre-
dict segmentation labels than its 2D counterpart.

Fig. 4 Segmentation inference examples, 2D + time DynU‑Net. 
Examples of short‑axis (SAx) and long‑axis (LAx) segmentation results 
on cases from an independent test set. For each case, the bottom row 
contains inference examples of worst performance at end‑diastole 
(left column) and end‑systole (right column), while the top row 
contains inference examples with top performance, more typical
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This idea could be explored further. While we saw that 
temporal redundancies in a series of 2D images can be 
modeled by 3D convolutional architectures, these types 
of models might not be the best suited as the models 
are forced to learn temporal and spatial context using 
3D convolutional kernels. Spatio-temporal relationships 
might be better modeled by other types of architectures, 
for example recurrent-based (RNN), by incorporating 
convolutional long short-term memory (LSTM) units in 
U-Net architectures as done by Lu et al. [31].

nnU-Net is an extensive framework that is currently 
the benchmark for numerous medical imaging tasks. It 
has been used in various challenges [13, 21–23, 58] was 
explored widely for cardiac segmentation [18, 19], and is 
frequently used as a base model in recent papers [6, 62]. 

However, nnU-Net has become highly complex with suc-
cessive modifications, and shows limited flexibility for 
customization. Reproducing the entire nnU-Net pipeline 
in external software platforms, particularly on scanners 
where Python code is not normally supported, becomes 
challenging. Our MONAI implementation drastically 
simplifies the translation process, while showing results 
that are on par with nnU-Net. In addition, thanks to early 
stopping and caching options available in MONAI, we 
reduced the training time significantly.

We showed that the strain values calculated from 
DENSEanalysis were generally in excellent agreement 
when obtained from the manual ground-truth and the 
automated LV myocardium segmentation, particularly 
reproducing the Ecc transmural gradient in SAx views 

Fig. 5 Typical strain results. Example of strain results obtained from manual or automated segmentation. Strain maps are displayed at peak strain, 
along with strain time curves
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reported by Zhong et  al. [64]. Additionally, when we 
compare to the results obtained from the recent multi-
center reproducibility study [3], we can see that the strain 
agreements between the automated and manual segmen-
tations are on par with the intra-user variability, which 
showed an excellent ICC across all strain components 
(0.93, 0.94, 0.92 resp. for Ecc, Ell, Err), and an excellent 
CoV for Ecc and Ell reproducibility but only fair for Err 
(resp. 3.0, 2.9 and 24.6). We can conclude, based on the 
strain comparability results on independent test sets, that 
the 2D + time DynU-Net inference does not induce a sig-
nificant variability in the strain calculations. The quality 

of segmentation still plays an important part in the abil-
ity to calculate strain. For a limited number of cases, it 
happened that the contours produced at inference time 
by the trained 2D + time DynU-Net were not continuous, 
which made it impossible to analyze with DENSEanaly-
sis to extract strain values (4 SAx and 3 LAx slices had 
this problem in the independent test set). This gener-
ally happens when the myocardium is particularly thin, 
especially in the LAx apical regions, or when the image 
contrast is reduced. From the perspective of doing inline 
quality control, when such a network will be used directly 
on the scanner, it is critical that the topology of the 

Fig. 6 Bland–Altman plots, strain values after manual vs automated segmentation. Ecc, Ell and Err reproducibility when calculating strain with 
DENSEanalysis from manual vs automated LV myocardial segmentation. Left: short‑axis. Right: long‑axis. Ecc circumferential strain, Ell longitudinal 
strain, Err radial strain

Table 6 Agreement measures (Bland–Altman, CoV, ICC) of strain calculation between manually and automated left‑ventricular 
myocardium segmentation

CoV Coefficient of variation, ICC Intraclass correlation coefficient, LAx long axis, SAx short axis

Bias Limits CoV ICC ICC 95% CI

SAx Ecc 0.00 − 0.03:0.03 7.2 0.95 0.92–0.97

Err 0.02 − 0.11:0.07 21.2 0.90 0.85–0.94

LAx Ell 0.00 − 0.03:0.02 7.7 0.91 0.79‑0.96

Err 0.01 − 0.08:0.05 24.6 0.87 0.72–0.95
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myocardial segmentation is preserved. To guide models 
in that respect, previous works have shown interesting 
results when topological priors are enforced during train-
ing time [7]. The impact of topological errors on the rest 
of the pipeline (phase-unwrapping and strain extraction) 
will however be mitigated when training additional mod-
els to automatically process these steps as well in future 
work.

We validated the trained DynU-Net architecture fur-
ther on a second test set, from a different center, differ-
ent scanners, and with different acquisition parameters. 
Despite these differences, the segmentation performance 
is on par with that found in the original test set, which 
is impressive given the domain shift. However, the most 
adverse cases, where Dice score and/or Hausdorff dis-
tance is impaired, show generally worse performance 
than those from the original test set, up to a point where 
segmentation can extend outside of the myocardium 
(Additional file  1: Fig. S2). More importantly, we see 
cases where the topology of the myocardium is lost, mak-
ing the following strain analysis with DENSEanalysis 
impossible. Four of 45 SAx exams could not be processed 
because of these topological failures.

Additional work needs to be done to preserve the 
topological structure of the myocardial segmentation, 

as seen in the previous section, and this is particularly 
important to successfully conduct LAx analyses. We 
applied the long-axis 3D DynU-Net model on the sec-
ond test set as well. While this resulted in reasonable 
segmentation performance (Dice score of 0.81 ± 0.04, 
Hausdorff distance of 14.5 ± 10.5), a majority of these 
cases showed a non-continuous topology, which made 
it impossible to conduct a strain analysis.

These segmentation issues mainly come from the 
distribution shift between the secondary test set and 
the original dataset. This shift is substantial, given that 
the data was acquired in a different center, on different 
scanners, and with different acquisition parameters. In 
particular, observers segmented a thicker myocardium 
as ground-truth compared to the original dataset, and 
the DENSE protocol typically acquired cardiac frames 
finishing just after peak systole, rather than filling the 
whole cardiac cycle. While the trained DynU-Net mod-
els are effective on the second test set, the distribution 
shift does impact performance, and domain adaptation 
strategies will prove necessary if we want to success-
fully export such networks to multiple centers. While 
intra- and inter-scanner variability are generally bet-
ter with manual analysis, the variability introduced by 
the automated myocardial segmentation for short-axis 
data remains within reasonable limits. Indeed, the 
Bland–Altman reproducibility metrics (bias and limits 
of agreement) are either on par or superior to the ones 
exposed in the multi-center reproducibility study [3] 
for inter-observer variability. This is even more remark-
able given the domain shift described above, which 
shows how promising 2D + time U-Net-based models 
can be for DENSE image analysis.

Fig. 7 Bland–Altman plots, strain values after manual vs automated segmentation, short‑axis external test set. Ecc and Err reproducibility when 
calculating strain with DENSEanalysis from manual vs automated LV myocardial segmentation. Ecc, circumferential strain; Err, radial strain; LV, left 
ventricular

Table 7 Agreement measures (Bland–Altman, CoV, ICC) of strain 
calculation between manually and automated left‑ventricular 
myocardium segmentation, short‑axis external test dataset

CoV Coefficient of variation ICC Intraclass correlation coefficient, Ecc 
circumferential strain, Err radial strain, LV left ventricular

Bias Limits CoV ICC ICC 95% CI

Ecc 0.00 − 0.02:0.02 4.2 0.92 0.86–0.96

Err 0.07 − 0.02:0.15 47.0 0.85 0.74–0.92
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Fig. 8 Bland–Altman plots, intra‑ and inter‑scanner strain reproducibility. Analysis of the intra‑ and inter‑scanner reproducibility in strain values, 
induced by manual or automated segmentation. Err and Ecc are reported for short‑axis data. Ecc circumferential strain, Err radial strain, LV left 
ventricular
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Limitations
While the datasets used in this study are diverse, includ-
ing subjects with various conditions, acquired and ana-
lyzed at different times, the quality of the ground-truth 
manual data was imperfect in many cases due to the lim-
ited amount of time available for the analyzing researcher 
to perform the manual analysis, as well as systematic dif-
ferences between observers. In addition, the main data-
set that we used to train our models was acquired from 
a single center on two different 3T scanners only. While 
we showed that, in terms of raw segmentation metrics, 
our models are able to mitigate the distribution shift that 
is introduced when using them for inference on external 
data, some topological problems remain and are neces-
sary to be addressed if we want to successfully follow 
segmentation with strain extraction. Training on more 
diverse datasets, using domain adaptation solutions [14, 
25, 39, 54] or enforcing topological coherence are poten-
tial strategies to mitigate this issue [7].

In this work, we explored how including temporal 
information in the DL models results in more robust 
segmentations of DENSE images than 2D models. How-
ever, DL was not applied to the rest of the pipeline, where 
minimal user interaction remains. In particular, current 
methods for phase unwrapping and strain estimation 
suffer from regularization and partial volume effects. In 
future work, we will extend the architectures developed 
in this study to understand how they might improve the 
processing of phase unwrapping and strain estimation, 
combined with the segmentation work presented in this 
study that will help future strain analysis. Ghadimi et al. 
[11] and Kar et  al. [26] recently explored the use of 2D 
CNNs for automating the unwrapping of the myocardial 
phase, removing the need for seed points. It will be inter-
esting to understand how temporal models can make 
robust end-to-end automated pipelines.

Finally, the development work that we have done on the 
models and DL pipeline was made with the aim of simpli-
fying the portability of the process, especially for imple-
mentation on the scanner, for scan-time provision of strain 
maps. However, the actual impact on clinical pipelines is 
yet to be validated. In the future, we plan to test our mod-
els in inline settings and validate their use on clinical data.

Conclusion
In this work, we trained DL networks to segment the LV 
myocardium from both SAx and LAx DENSE images 
for the first time, automating the most time-consuming 
step in the DENSE analysis. Temporal U-Net-based mod-
els show excellent robustness to contrast variability and 
acquisition artifacts when compared to manual methods, 

with no impairment of strain calculation if used in con-
ventional DENSE analysis pipelines.

DL is extremely promising for the rapid and accurate 
extraction of cardiac strain information. Temporal mod-
els move the processing of DENSE sequences one step 
closer to the clinical setting, to estimate myocardial strain 
for patients suffering from cardiovascular diseases at the 
scanner, reducing the need for burdensome and time-
consuming processing tasks, and improving the patient 
journey.
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