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Abstract 

Background Standardised performance assessment of image acquisition, reconstruction and processing methods 
is limited by the absence of images paired with ground truth reference values. To this end, we propose MRXCAT2.0 
to generate synthetic data, covering healthy and pathological function, using a biophysical model. We exemplify the 
approach by generating cardiovascular magnetic resonance (CMR) images of healthy, infarcted, dilated and hyper-
trophic left-ventricular (LV) function.

Method In MRXCAT2.0, the XCAT torso phantom is coupled with a statistical shape model, describing population 
(patho)physiological variability, and a biophysical model, providing known and detailed functional ground truth of LV 
morphology and function. CMR balanced steady-state free precession images are generated using MRXCAT2.0 while 
realistic image appearance is ensured by assigning texturized tissue properties to the phantom labels.

Finding Paired CMR image and ground truth data of LV function were generated with a range of LV masses (85–
140 g), ejection fractions (34–51%) and peak radial and circumferential strains (0.45 to 0.95 and − 0.18 to − 0.13, 
respectively). These ranges cover healthy and pathological cases, including infarction, dilated and hypertrophic car-
diomyopathy. The generation of the anatomy takes a few seconds and it improves on current state-of-the-art models 
where the pathological representation is not explicitly addressed. For the full simulation framework, the biophysical 
models require approximately two hours, while image generation requires a few minutes per slice.

Conclusion MRXCAT2.0 offers synthesis of realistic images embedding population-based anatomical and functional 
variability and associated ground truth parameters to facilitate a standardized assessment of CMR acquisition, recon-
struction and processing methods.

Keywords Cardiac magnetic resonance, Biomechanical modeling, Image synthesis, Population variability, Strain

Background
In-silico phantoms of human cardiovascular anatomy and 
function provide a versatile tool for the testing and vali-
dation of image acquisition, reconstruction and post-pro-
cessing strategies in cardiovascular magnetic resonance 
(CMR) [1]. Producing synthetic images from a phantom 
has the benefit that the resulting images have corre-
sponding anatomical labels and functional ground-truth 
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data, which are useful for the evaluation of the perfor-
mance of a CMR pipeline. For example, the availability 
of a paired image-ground truth dataset is essential for a 
standardized evaluation of image processing tools, such 
as those for automatic left-ventricular (LV) segmentation, 
shape and strain analysis.

Available phantoms can be classified into three cat-
egories: voxel-based, analytical and hybrid. Voxel-based 
phantoms consist of labeled voxelised anatomical repre-
sentations obtained from patients [2, 3]. These are real-
istic, but do not generalize to population statistics and 
pathological cases [4]. Analytical phantoms are based on 
a mathematical description of tissue structures [5]. While 
they are less realistic, they are more flexible in terms of 
definition of anatomical variations. Hybrid phantoms 
have been proposed to overcome the limitations of the 
previous two categories [6]. Although hybrid and analyti-
cal phantoms allow for morphological variation, anatom-
ical and functional variability is mostly limited to healthy 
cases and function. Veress et  al. [7] proposed to couple 
a hybrid phantom to a biophysical model of the LV to 
simulate both healthy and infarct conditions. However, as 
stated by the authors, the fitting process is time consum-
ing and it cannot account for other pathological scenar-
ios, such as cardiomyopathy. More recently, Segars et al. 
[8] proposed a methodology to couple a full heart func-
tional model to the XCAT phantom. While this allows to 
simulate realistic cardiac function, it is specific to XCAT 
and it cannot be rapidly deployed to general pathological 
cases.

In the last years, solutions based on shape models 
(SM) (with voxelised or mesh representations) have been 
proposed to address the need for expressive anatomical 
descriptions [9–13]. While these works have shown the 
capability of representing dominant LV anatomical fea-
tures, they did not focus on the definition of a sampling 
strategy to generate synthetic anatomies to capture popu-
lation variability, including both healthy and pathological 
conditions.

Given an in-silico phantom, two main methodologies 
for generating CMR images can be identified. In the first 
approach, the signal is generated using numerical solu-
tions of the physical equations (Bloch equations). This 
has been applied for cardiac and brain image synthesis 
[14–18]. In [1, 19] the use of signal models for specific 
sequences of interest has been proposed to compute the 
resulting image data. In [20] a dataset for a virtual popu-
lation with varying acquisition parameters was generated 
using MRXCAT [1] and used to pre-train a segmenta-
tion network, which was subsequently fine-tuned on 
real images. This approach greatly reduces the amount 
of in-vivo images required. However, the segmentation 
performance degraded when there was no fine-tuning 

on real data as the simulated images were not completely 
realistic. In [16, 21, 22] it has been shown that synthetic 
images can be used to augment, and eventually replace, 
in-vivo datasets for training of neural networks, mak-
ing realistic image synthesis an important tool for CMR 
development.

Alternative generative approaches consist of using neu-
ral networks for conditional synthesis or style transfer 
[23–30]. They have been used for several imaging modal-
ities such as ultrasound [31], computed tomography [26] 
and magnetic resonance imaging [23–25, 32]. The reader 
is referred to [33] for a recent overview of medical image 
synthesis.

In [26, 34] a factorised representation of images has 
been proposed, composed of a spatial representation of 
the anatomy combined with a modality description. The 
latter describes how tissue structures are rendered in the 
image. However, the network cannot be used to generate 
new anatomies and it requires labelled images for train-
ing, which are costly to obtain. In [23] unlabelled CMR 
images were used to learn a multi-tissue anatomical 
model which was fit to variable anatomies by a learned 
deformation model. The anatomical model was then 
used to condition a SPADE-GAN [35] to synthesise an 
image volume. While this approach  solved both issues 
of the two previous factorised representation learn-
ing approaches [26, 34], the anatomical model learnt 
using the network does not represent conventional tis-
sue classes and is thus not suited as anatomical ground 
truth. In [24], the XCAT phantom was used as anatomi-
cal ground truth semantic labels and  MR images were 
synthesized using a SPADE-GAN. In [36], DatasetGAN, 
leveraging the generator features of StyleGAN [37], was 
proposed to produce a large synthetic dataset of images 
and to also predict pixel-wise class labels. The evaluation 
of this method has demonstrated that a segmentation 
network trained with datasets from DatasetGAN outper-
forms previous semi-supervised methods and is on par 
with the same network trained fully-supervised on a real 
dataset. Similarly, SemanticGAN [38] was developed to 
simultaneously generate both synthetic images and cor-
responding segmentation labels using StyleGAN2.

While physics-based approaches allow for better con-
trol over the parameters related to image generation 
with respect to style transfer approaches, they produce 
less realistic appearance. In [39] intra-organ texture for 
bones and organs was proposed to improve the realism 
of images generated with signal models. This approach, 
however, has not yet been applied to CMR image 
synthesis.

The present work proposes MRXCAT2.0 to address 
the two main limitations of in-silico phantoms: reduced 
variability and lack of realism. Realistic LV anatomy and 
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function are generated by coupling a statistical shape 
description with a biophysical model. Surrounding tissue 
structures are generated with the XCAT model. Tissue 
maps of proton density (PD), longitudinal and transverse 
relaxation times  (T1,  T2) are assigned to image labels 
using a neural network trained to maximize the similar-
ity of the background with the target appearance of real 
CMR images. Synthetic images are then generated using 
MRXCAT2.0 and used to assess the performance of pub-
lished CMR processing methods [40, 41] against known 
ground truth of healthy and pathological cardiac function 
as a use case.

Methods
The full method of MRXCAT2.0 is schematically shown 
in Fig.  1. In the figure, red boxes correspond to the 
parts of the methods that are connected to each other 
via input/outputs of the black boxes. The final outputs 
are the synthetic CMR images paired with ground truth 
data (green box). The starting points are the two inputs: 
the selection of the (patho)physiological characteristics 

of anatomy and function and the parameters for the 
XCAT phantom (blue boxes). The (patho)physiologi-
cal status is used to define the corresponding anatomy 
and tissue micro-structure from the statistical shape 
model and the appropriate physiological parameters 
(tissue stiffness, pressure loading, myocyte contraction) 
for the biophysical simulation that generates the image 
foreground, i.e. the LV shape and its change over the 
cardiac cycle. The XCAT parameters are used to define 
the torso anatomy and the displacement field describ-
ing the contraction of the other three cardiac cham-
bers. This is referred to as the background of the image. 
The background tissue masks are warped to match the 
foreground and the resulting tissue maps are the input 
to the texturizer for the calculation of tissue properties 
(PD, T1, T2) and the definition of the final phantom. 
These properties are used as input to the signal model 
to generate synthetic CMR images associated with the 
input parameters and compliant with fundamental LV 
biomechanics.

Fig. 1 Schematic visualization of MRXCAT2.0. Input blocks are shown in blue, while the output is represented by the green box. Red boxes 
represent the pieces of the method (and corresponding software implementation) that are connected via the input/outputs to/from the black 
boxes
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Left‑ventricular population shape model
The LV SM was defined using the anatomies from the 
Multi-Modal Whole Heart Segmentation (MMWHS) 
dataset [42–44] as built in our recent work [13].

A convolutional variational autoencoder (VAE) [45] 
was used to identify a low-rank representation of epi-
cardium and endocardium coordinates (see Addi-
tional file 1 for details). The network structure is shown 
in Fig. 2. Each variable of the low-rank representation is 
associated with a normal Gaussian probability distribu-
tion, which is sampled to generate synthetic realistic 
endocardial and epicardial shapes from which it is pos-
sible to generate a volumetric mesh [13].

The expressiveness of the SM was assessed using an 
additional dataset, the Automated Cardiac Diagno-
sis Challenge (ACDC) [46]. End-systolic images were 
meshed using our recently published method [12] and 
the accuracy of the reconstruction with the SM was 
evaluated as the average distance between correspond-
ing endocardial and epicardial points in the original and 
reconstructed meshes. Additionally, a k-means cluster-
ing algorithm [47] was used on the latent space repre-
sentation of the ACDC meshes with three target clusters 
to identify sampling regions of the latent space for the 
(patho)physiological conditions labelled in the ACDC 
dataset (healthy (NOR), dilated (DCM), hypertrophic 
(HCM)). Classification accuracy of healthy, DCM and 
HCM was evaluated against the clinical labels. The cen-
tres of the clusters were then used as reference anatomies 
for showcasing the method proposed in this work.

Cardiac functional model
The biophysical model for the LV is based on our pre-
vious work on cardiac mechanics [13] and material 

modelling [48–51]. A technical description is presented 
in the Supplementary material and in [13].

The response of the LV to the systemic pressure loading 
depends on the contribution of a passive and an active 
component. The passive component was described by the 
Holzapfel-Ogden model [52] defined as a function of tis-
sue shear moduli and fiber orientations. In our approach, 
the evolution of the active contribution was simulated as 
in [53–55]. In the model, the pericardial sac was simu-
lated by allowing for longitudinal motion of the points 
but constraining epicardial radial displacement. Endocar-
dial pressure was simulated by coupling the ventricular 
model to a simplified lumped-parameter model of sys-
temic circulation [13].

Image foreground generation
The functional model was personalized to physiological 
and pathological conditions of interest for the genera-
tion of the image foreground, i.e. to simulate ground-
truth cardiac function. In a first step, a synthetic anatomy 
was sampled from the corresponding cluster (e.g. NOR, 
DCM, HCM). Then, material properties, fiber orien-
tations and maximum active stress were selected to 
describe the target cardiac function. The LV micro-struc-
ture was defined using linear transmural laws as in [13].

Reference healthy values for the passive tissue response 
and potential propagation velocities were taken from 
[56], while values for DCM and HCM cases were 
obtained by defining the material coefficients between 5 
and 10 times larger than in the normal case [57].

Anatomical details can be further modified by add-
ing localized anatomical defects to any of the geom-
etries thanks to the physiological parametrization 
associated with the shapes. The corresponding variations 
of wall thickness, mechanical and electrophysiological 

Fig. 2 Convolutional variational autoencoder structure. The input is a 6-channel 128 × 128 pixel image representing the three-dimensional 
coordinates of epicardium and endocardium. Each encoder block (EncBlock) features a 2D convolutional layer (kernel size of 3, stride 1), batch 
normalization and a ReLu activation function. Each decoder block  (DecBlock features an upsampling bilinear layer of factor 2, a 2D convolutional 
layer (kernel size of 3, stride 1) and a ReLu activation function, which is not used in the last block. A ReLu activation function is also used for the 
linear layers. The red box represents the latent space variables
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parameters were automatically adjusted, gradually tran-
sitioning from healthy to diseased tissue (see Additional 
file 1). In this work an elliptical scar at the free wall was 
considered, but any approach could be adopted here.

Image background generation
The shape and functional models described in the previ-
ous sections were used to generate time-resolved 3D LV 
meshes that were voxelised and sliced to produce the cor-
responding LV tissue masks. These were then augmented 
by including tissue labels for the right ventricle (RV), 
atria and other organs using the XCAT software [6].

Each two-dimensional (2D)  slice generated with the 
XCAT phantom was warped such that the LV epicardial 
contours from XCAT matched those of the epicardium 
from the masks generated by  LV deformations. The sur-
rounding tissue was deformed accordingly by smooth 
interpolation. The approach can also account for breath-
ing motion from XCAT. Details are presented in the 
Additional file 1. This coupling approach does not require 
modifications to the XCAT code (essentially, a self-con-
tained additional step is added between anatomy and 
image generation) and, hence, keeps all functionalities of 
the software.

Tissue properties definition
A neural network was used to assign textured tissue prop-
erties to the many-tissue maps combining foreground 
and background. A dataset of paired many-class segmen-
tation masks and corresponding tissue-property images 
(i.e. images where PD, T1, and T2 values are known for 
every pixel) is required to train such a network. To our 
knowledge, there is no large dataset of tissue-property 
images available (even ignoring the requirement of corre-
sponding many-class segmentation masks). Such a paired 
dataset was therefore synthetically generated and then 
used for training.

First, a CMR generative model (CMRGenNet) based on 
StyleGAN2 with Adaptive Discriminator Augmentation 
[37, 58] was trained on the ACDC dataset. Then, using 
the method proposed in DatasetGAN [36], the CMR-
GenNet was augmented with an additional branch to 
produce many-class labels for all generated images (see 
Fig. 3, technical details in the Additional file 1).

The  CMRGenNet was used to generate a dataset of 
8640 synthetic CMR images and corresponding 12-class 
segmentation masks, which were then utilized to train 
the MultiClassNet, a UNet [59], to predict multi-class 
segmentation masks from real CMR images. The Multi-
ClassNet was then used to perform multi-class segmen-
tation on end-systolic (ES) and end-diastolic (ED) images 
from the ACDC dataset.

Fig. 3 CMRGenNet structure. A StyleGAN2 with Adaptive Discriminator Augmentation (ADA) (orange blocks) generates realistic CMR images 
while the label generator branch (light blue blocks) predicts a semantic segmentation and also provides a segmentation uncertainty estimate as a 
byproduct. Note that the two branches are trained independently. In particular, there is no gradient back-propagation from the semantic label into 
the StyleGAN2 architecture. In addition, the mapping of class labels to colors is provided on the right
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For these segmentations, PD, T1 and T2, maximising 
the similarity with the corresponding image, were com-
puted using an analytic closed-form expression of the 
balanced steady-state free precession (bSSFP)  sequence, 
used to acquire the ACDC dataset (details in the Addi-
tional file 1). The same equation is used in the MRXCAT 
software.

This process yielded a paired dataset of 1800 parameter 
maps produced directly from the segmentation masks, 
and the corresponding detailed texture maps produced 
by the optimisation. As a final step, the texturizer, Text-
Net, was trained to map initialized uniform parameter 
maps to textured parameter maps. The TextNet architec-
ture was based on a UNet.

The final images were post-processed such that any 
texture was removed from the LV myocardium. This 
is justified by the relative uniformity of image signal in 
the myocardium of real CMR images and the need for 
removing tissue property variations at the border of the 
myocardium resulting from partial-voluming effects. All 
tissue properties were then warped according to label 
deformations over the cardiac cycle to preserve the con-
sistency of the anatomical details of the images.

Synthetic CMR image generation
The resulting anatomical phantoms with corresponding 
texturized tissue properties were used to generate cine 
CMR images in MRXCAT [1]. For the use cases pre-
sented here, 2D bSSFP acquisition parameters were: repe-
tition time TR = 3.0 ms, echo time TE = 1.5 ms, flip angle 
of 60°, and a signal-to-noise ratio (SNR) of 30. Eight sur-
face coils and a Cartesian trajectory were simulated. The 
signal of the image was generated using the closed-form 
expression of the bSSFP signal equation implemented in 
MRXCAT, which assumes steady-state properties. As a 
final note, we highlight that the tissue phantom was gen-
erated at higher resolution than the target image resolu-
tion to accommodate partial voluming effects due to the 
limited bandwidth of the CMR encoding process.

DeepStrain analysis
The paired ground-truth and images data generated in 
this work were used as input to the DeepStrain frame-
work [40, 41]. DeepStrain leverages a network for 
segmentation (CarSON) and one for cardiac motion 
estimation (CarMEN). The networks were trained on 
the ACDC datasets, which were also used in our work to 
define TextNet. CarSON and CarMEN predictions were 
used as input to an additional network that computes the 
corresponding LV strain. To be used in these networks, 
the images of this work were intensity-normalized and 
resampled to an isotropic in-plane resolution of 1.25 mm 
and a total number of 16 slices. They were then cropped 

around the LV mask to obtain 128 × 128 × 16 pixel 
images.

Results
Left‑ventricular population shape model
Figure  4 shows the SM features encoded with selected 
latent variables sampled at ± 3σ of the normal probability 
distribution defined with the VAE. These modes are asso-
ciated with an identifiable physiological interpretation: 
global shape scaling (Fig.  4a, c, f, j), valve plane tilting 
(Fig. 4e), sphericity and wall thickness (Fig. 4b, d, g, h).

The average shape reconstruction error of the 
ACDC dataset was 6.5 ± 1.0  mm with split errors of 
6.0 ± 1.0 mm, 4.5 ± 0.6 mm, and 8.0 ± 1.5 mm for healthy, 
DCM and HCM anatomies, respectively. A ’t-SNE’ map 
[60] was used to reduce the latent space vector dimension 
of the ACDC dataset to 2D and allow for the visualiza-
tion of the anatomical clustering in Fig. 5. Clinical labels 
are shown in the figure as healthy (NOR, green squares), 
DCM (orange circles) and HCM, (grey triangles). The 
anatomies corresponding to the clusters shown in Fig. 5 
(black diamonds) are visualized in Fig. 6. The accuracy of 
the classifier evaluated on these shapes was 0.86.

Cardiac functional model
The simulation of LV function with the biophysical model 
provided a good representation of both physiological 
and pathological cases: LV mass were 90 g, 140 g, 100 g 
and 85  g for NOR, DCM, HCM and infarcted cases, 
respectively. ED and ES volumes were 145  ml/70  ml, 
270 ml/180 ml, 156 ml/92 ml and 159 ml/80 ml for NOR, 
DCM, HCM and infarcted cases, respectively; result-
ing in LV ejection fraction values of 51%, 34%, 41% and 
49%, respectively. The corresponding shape average peak 
systolic radial/longitudinal/circumferential strains  (er/el/
ec) were: 0.78/− 0.17/− 0.14 (NOR), 0.45/− 0.10/− 0.15 
(DCM), 0.50/−  0.14/−  0.13 (HCM) and 0.95 
(0.30)/− 0.18 (− 0.17)/− 0.18 (0.01) remote(scar) regions 
of the infarcted case.

Tissue property definition
Figure  7a shows 15 synthetic images generated with 
CMRGenNet and a comparison between the labels pro-
duced by CMRGenNet and our manual annotations 
(Fig.  7b, top and bottom rows, respectively). The CMR-
GenNet segmentation branch produced an average Dice 
score of 0.91, 0.85 for RV  and LV blood pools, respec-
tively, and 0.67 and 0.82 for  RV and LV myocardium, 
respectively, when compared to the 10 manually anno-
tated cases used for validation.

Figure 8 compares images and multi-class labels gener-
ated by CMRGenNet (MRI and GAN lines, respectively) 
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with the segmentations predicted by the  MultiClass-
Net (UNet). The MultiClassNet produced an average 
Dice score of 0.90, 0.86, 0.65 and 0.82 of the mask pre-
diction for the right-ventricular (RV) blood pool, LV 
blood pool, RV myocardium and left-ventricular myo-
cardium, respectively, on synthetic images generated by 
CMRGenNet.

Image generation
Figures  9, 10, 11 and 12 show short-axis (SAx) slices of 
images generated with MRXCAT2.0 from the corre-
sponding simulations overlaid with ground truth physi-
ological strain values. Figure  13 shows the steps for the 
generation of the synthetic images and a comparison 
between the CMR images obtained without and with tex-
turization. In the non-texturized case, the default tissue 
properties of MRXCAT have been considered.

(a) Mode 1, scaling (b) Mode 2, thickness (c) Mode 3, scaling

(d) Mode 4, thickness (e) Mode 5, valve tilting (f) Mode 6, scaling

(g) Mode 7, thickness (h) Mode 8, wall thickness (i) Mode 9, scaling
Fig. 4 Anatomical features defined by sampling the shape model (SM) latent space. For each of the panels a–i, one variable of the latent space is 
sampled at -3 (orange shape) and + 3 (blue shape) standard deviations of their normal probability distribution, while all other variables are set to 
zero (e.g. their mean). This visualizes the anatomical variability encoded with each latent space variable. When sampling new anatomies, more than 
99.7% of the shapes will lie within the bounds visualized
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DeepStrain analysis
Results of using the DeepStrain software are summa-
rized in Fig. 14. On average, a Dice score of 0.82 across 
all cardiac phases is obtained. The lowest performance 
was observed for the infarcted case, in particular for 
the thin scar region. The average displacement error 
computed from the synthetic data was 1.0 ± 0.9  mm. 
Strain predictions showed a good agreement for 

circumferential strain  (ec average error of 0.02 ± 0.04 
across all cases). Larger errors for cases with thin-
ner walls such as DCM and infarcted cases were seen. 
Additionally, a general underestimation of radial strains 
(−  0.24 ± 0.21) was observed, with the lowest perfor-
mance obtained for the infarcted case (− 0.20 ± 0.21).

The analysis of DeepStrain performance conducted 
by the authors in [40] showed segmentation accuracy 
with Dice scores of 0.89 and 0.91 for ED and ES cardiac 
phases, respectively, which agreed with our observed 
accuracy of 0.82 across all phases.

Discussion
A methodology to extend the current XCAT torso phan-
toms with LV anatomical variability derived from a pop-
ulation-based statistical shape model has been presented. 
Healthy and pathological cardiac function, also including 
local anatomical and tissue defects, have been simulated 
and personalised using a biophysical cardiac electrome-
chanical model. Tissue properties of the phantom were 
assigned using an image-to-image network trained to 
maximize the similarity of resulting images with real 
bSSFP CMR data. The extended phantom was then used 
as input to CMR image production with realistic popu-
lation settings and biophysical model parameters linked 
to ground truth displacement and strain values. Finally, 
synthetic images were used to showcase their adoption in 
testing CMR image processing protocols.

As observed in our previous work using proper orthog-
onal decomposition (POD) [13], amplitude variations 
of a single latent variable from the VAE modulated spe-
cific anatomical features of the left ventricle. The contri-
butions of the modes computed on the ACDC dataset 
showed distinct cluster values (Fig. 5) for (patho)physio-
logical conditions as healthy, DCM and HCM. Note that, 
as the representation was learned in an unsupervised 
way, the ability to discriminate classes results directly 
from the disentangled nature of the learned representa-
tion. The corresponding cluster centers (black diamonds 
in Fig.  5) determined the anatomical shapes shown in 
Fig. 6. The DCM cluster center featured an ES configura-
tion with enlarged blood pool volume (180 ml) and thin 
muscle walls, while the HCM case showed an increased 
wall size and a blood pool volume similar to the healthy 
case (92 ml and 70 ml, respectively).

The SM showed reasonable accuracy in the reconstruc-
tion of a new dataset, with an average error between 
points of 6 mm. While the error was higher in compari-
son to our previous POD approach [13], the VAE method 
determined a higher clustering accuracy (0.86) than the 
linear POD approach (0.78). Additionally, the normal 
probability distribution associated with the latent space 

NOR DCM HCM Centroids

Fig. 5 Visualization of the latent space variables of the shape model 
for the Automated Cardiac Diagnosis Challenge (ACDC) dataset. 
Anatomies are color coded according to the clinical label: healthy 
(NOR, green squares), hypertrophic cardiomyopathy (HCM, grey 
triangles) and dilated cardiomyopathy (DCM, orange circles). Black 
symbols show the clusters’ positions calculated using the k-means 
algorithm on the latent-space variable vectors. Note that due to 
the non-linear nature of the embedding, the cluster means do not 
necessarily match the barycenter of the point clouds

Fig. 6 Long (a) and short (b) axis cuts of the anatomies 
corresponding to the healthy (green), hypertrophic cardiomyopathy 
(grey) and dilated cardiomyopathy (orange) cluster centers of the 
ACDC dataset
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defined by the VAE allowed for sampling of realistic 
synthetic geometries spanning the population variabil-
ity (from the MMWHS dataset) that could be used as 
input for biophysical models. The use of a shape model 
improved the implementation proposed by [7] in two 
ways: it allowed for fast (a few seconds) generation of 
anatomies and it included the possibility of represent-
ing pathological cases. While our approach works on a 

discrete image and not on the parametrized anatomy as 
the approach proposed by [8], it is more versatile and can 
be coupled with any available numerical phantom.

The selection of appropriate physiological model 
parameters for each of the simulations allowed to obtain 
realistic LV cardiac functions (Figs.  9, 10, 11, 12) and 
ejection fractions (EF) consistent with clinical findings. 
The simulated healthy cardiac function (Fig.  9) had an 

Fig. 7 Images and multi-class labels of the CMRGenNet branches. In (a) 15 synthetic images are shown and in (b) manual annotations over 5 
images (top row) are compared with predicted multi-class labels from the semantic segmentation branch (bottom row). Below each column the 
corresponding Dice score (DCS) between the manual and predicted annotations is reported. It is noted that these examples correspond to the best 
(first two columns) and worst (last two columns) predicted cases
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EF of 51% and strains within the physiological range [61]. 
The DCM simulation (Fig. 10) resulted in reduced strains 
as compared to the healthy heart and an overall reduced 
deformation over the cycle and, consequently, a lower EF 

of 34%. Also, the HCM simulation resulted in a reduced 
EF (41%) and lower radial strains as compared to the 
healthy case (Fig. 11).

Fig. 8 Multi-class segmentations of synthetic images. Synthetic CMR images (top row, CMR), multiclass annotation from the CMRGenNet 
semantic segmentation branch (mid row, GAN), and MultiClassNet predictions (bottom row, UNet) are shown (a). The Dice score (DCS) value for 
the multi-class annotations from the semantic segmentation branch is reported. It is noted that these examples correspond to the best (first two 
columns), average (mid columns) and worst (last two columns) predicted cases. DCS values for the segmentation branch of the MultiClassNet on 
labelled images used for training and validation are provided (b). These corresponds the synthetic images generated with CMRGenNet with the 
corresponding multi-class masks. Labels refer to the right ventricular (RV) and left-ventricular (LV) blood pools, RV blood pool and LV blood pool, 
respectively, and the RV and LV myocardium (MYO), RV MYO and LV MYO, respectively. BP blood pool
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The infarcted LV simulation showed a preserved EF of 
49%, with high strains of the remote tissue to compensate 
for the reduced mobility of the scar region (Fig. 12). Cir-
cumferential and longitudinal strains of the scar region 
also showed the typical bulging out of the muscle at the 
initial phases of systole, which was related to the reduced 
wall thickness and the rapid pressure increase in the ven-
tricle cavity.

Images and multi-class maps produced by CMRGen-
Net (Fig.  7) demonstrated reasonable realism and accu-
racy in the predicted multi-tissue masks. Segmentation 
labels from the MultiClassNet, which were used as input 
for training the texturizer, were in good agreement with 
those generated from the segmentation branch of the 

CMRGenNet. The comparison of the CMR images in 
Fig.  13 demonstrated a substantial increase in real-
ism in image appearance when using texturized tis-
sue properties with respect to uniform fields for each 
mask. Also, contrarily to the previous approaches based 
on style transfer or image warping methods [62], our 
approach augmented phantom masks with tissue proper-
ties that can be used for the generation of CMR images 
with arbitrary sequences and parameters, allowing for 
higher versatility. In fact, while style transfer methods 
can generate very realistic images, there is no control of 
CMR sequence parameters, SNR, image resolution and 
artifacts.

Fig. 9 Synthetic CMR images and ground truth strains for the healthy LV. SAx image over the cardiac cycle (a) and overlay of radial (b) and 
circumferential (c) strains. Ground truth simulated strain values [mean value (solid line) and standard deviation (shaded area)] over the full anatomy 
for radial  (er), longitudinal  (el) and circumferential  (ec) strains (d)
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In our investigation, the accuracy of the Deep-
Strain method in tracking LV wall displacements was 
1.0 ± 0.9  mm. These errors were slightly lower than 
those reported in the original study (2.89 ± 1.52 mm and 
1.8 ± 0.2  mm for in-vivo and synthetic images, respec-
tively [41]). The higher accuracy for our synthetic images 
was mostly related to the high SNR values used in our 
simulations, and to the small dataset considered. In terms 
of segmentation performance, the lowest Dice score 
was observed for infarcted areas, where a thin myocar-
dial wall was prescribed. Dice scores values very close to 
those reported in the DeepStrain publication for normal, 
HCM and DCM conditions.

Finally, a good agreement for circumferential strain 
predictions was found, but a significant underestimation 
of the radial component was observed. However, peak ES 
radial strains inferred in our analysis were in the range 
of those reported in [41] (Fig.  7a in the reference) for 
healthy conditions (in the range of 25%). Since for healthy 
conditions with EFs around 50%, radial strains between 
40 and 60% are expected, we argue that radial strain 
underestimation could be a limitation in the DeepStrain 
approach. Accordingly, we believe that our synthetic 
images are valid.

Fig. 10 Synthetic CMR images and ground truth strains for the DCM case. SAX image over the cardiac cycle (a) and overlay of radial (b) and 
circumferential (c) strains. Ground truth simulated strain values [mean value (solid line) and standard deviation (shaded area)] over the full 
anatomy for radial  (er), longitudinal  (el) and circumferential  (ec) strains (d). The dashed black line represents the average on the healthy anatomy for 
comparison
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Limitations
The shape model, representing anatomical variability, was 
trained on a limited dataset. Although we observed that 
the resulting low-dimensional VAE representation was 
able to capture variations in a dataset different from the 
training one, we believe that higher reconstruction and 
training accuracy could be obtained by training the VAE 
on a larger clinical dataset. Additionally, while a simple 
scar model has been implemented, the approach could be 
extended to arbitrary shapes and property variations.

The biophysical model also simplified some aspects 
of cardiac function: the electro-physiological model 
was a reasonable approximation in absence of electri-
cal pathology, but should be extended to more complex 

representations to account, for example, for the effect of 
fibrillation. Also, the circulation model did not account 
for the pulmonary path of the closed-loop response of the 
circulatory system. We also defined the LV microstruc-
ture using linear approaches, but 3D personalised repre-
sentations could easily be implemented in the model [63].

The biophysical simulation was time-consuming and 
was responsible for more than 80% of the total computa-
tional cost. While in this work we have considered a con-
ventional biophysical model, new approaches as the one 
we propose in [13] could be used to speed up the com-
putations and reduce the computational time to a few 
minutes.

Fig. 11 Synthetic CMR images and ground truth strains for the HCM case. SAx image over the cardiac cycle (a) and overlay of radial (b) and 
circumferential (c) strains. Ground truth simulated strain values [mean value (solid line) and standard deviation (shaded area)] over the full 
anatomy for radial  (er), longitudinal  (el) and circumferential  (ec) strains (d). The dashed black line represents the average on the healthy anatomy for 
comparison
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Given the paired dataset of simple and detailed texture 
maps produced using the proposed multi-step pipeline 
of CMRGenNet, MultiClassNet, and per-pixel tissue 
parameter optimisation, there is the potential to use a 
more powerful image-to-image model (e.g. [35]) to learn 
TextNet, which should allow for sharper and more real-
istic texturing. We also noted that the MultiClassNet 
did not show state-of-the-art performance in the seg-
mentation of the LV myocardium. This aspect, however, 
did not represent a limitation in the method, since the 
multi-class masks were just used to train the texturizer 

and that, in the synthetic images, LV masks were defined 
from the biophysical model and tissue properties were 
manually assigned based on literature values.

We only focused on mid-ventricular 2D short-axis 
CMR images since the warping approach we imple-
mented was restricted to 2D problems. Therefore, basal 
or apical slices could not be appropriately tracked. Fur-
ther work is warranted to enable full heart simulation 
that could be coupled with the cardiac masks in XCAT 
and warped with a three-dimensional approach.

Fig. 12 Synthetic CMR images and ground truth strains for the infarcted LV. SAx image over the cardiac cycle (a) and overlay of radial (b) and 
circumferential (c) strains. Ground truth simulated strain values [mean value (solid line) and standard deviation (shaded area)] over the full anatomy 
for radial  (er), longitudinal  (el) and circumferential  (ec) strains (d). Strain statistics are split into scar region (orange color) and remote tissue (blue 
color). The dashed black line represents the average on the healthy anatomy for comparison
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Fig. 13 Visualization of the steps involved in the image generation process. Target LV mask from biophysical model (a). Initial background from 
XCAT (target LV mask in red) (b). Final phantom after background warping (target LV mask in red) (c), (d–f) initial tissue properties initialized from 
MRXCAT default values for PD, T1 and T2 respectively, (g–i) texturized PD, T1 and T2 maps after the application of TextNet, (j) CMR image generated 
with MRXCAT using the initialized tissue properties in (d–f), (k) CMR image generated with MRXCAT with the texturized tissue properties in g–i 
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CMR images were generated from texturized tissue 
properties inferred from a dataset of realistic images 
using a simple signal model [1]. While this approach 
oversimplified the physical aspects related to the genera-
tion of the signal, it showed that realistic synthetic images 
paired with full knowledge of the biophysical ground 
truth could be generated. In particular, we showed that 
the realism gap in simulated CMR images can be signifi-
cantly reduced through the use of textured phantoms. 
Also, we believe that results could be further improved 
by using a more modern GAN-based approach, such as 
in [64] or [35].

Conclusions
We successfully generated paired CMR image and 
ground truth data of LV function using a statistical shape 
model coupled with a biophysical solver. Both healthy 
and pathological conditions, including infarcted, DCM 
and HCM, could be simulated. Therefore, this approach 
can be employed to generate representative image pop-
ulation datasets with associated ground truth values for 

the performance assessment of image acquisition, recon-
struction and processing methods in CMR.
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