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Abstract 

Hemodynamic assessment is an integral part of the diagnosis and management of cardiovascular disease. Four‑
dimensional cardiovascular magnetic resonance flow imaging (4D Flow CMR) allows comprehensive and accurate 
assessment of flow in a single acquisition. This consensus paper is an update from the 2015 ‘4D Flow CMR Consen‑
sus Statement’. We elaborate on 4D Flow CMR sequence options and imaging considerations. The document aims 
to assist centers starting out with 4D Flow CMR of the heart and great vessels with advice on acquisition parameters, 
post‑processing workflows and integration into clinical practice. Furthermore, we define minimum quality assurance 
and validation standards for clinical centers. We also address the challenges faced in quality assurance and validation 
in the research setting. We also include a checklist for recommended publication standards, specifically for 4D Flow 
CMR. Finally, we discuss the current limitations and the future of 4D Flow CMR. This updated consensus paper will 
further facilitate widespread adoption of 4D Flow CMR in the clinical workflow across the globe and aid consistently 
high‑quality publication standards.
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Introduction
This is an update to the 4D Flow CMR Consensus State-
ment published in 2015 [1].

Hemodynamics evaluation is crucial for the assess-
ment of cardiovascular diseases, and is essential for 
understanding pathophysiology and explaining clinical 

manifestations. Four-dimensional cardiovascular mag-
netic resonance flow imaging (4D Flow CMR) uniquely 
provides comprehensive, in vivo characterization of car-
diovascular blood flow. With this approach, the blood 
flow velocity is measured through motion encoding in all 
three spatial directions and resolved relative to all three 
dimensions of space and to the dimension of time along 
the cardiac cycle (3D + time = 4D).

4D Flow CMR is an extension of 2D Flow CMR [2–6] 
which is currently the most used clinical flow application. 
Visualization of flow direction and magnitude are also 
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valuable in clinical practice. More advanced quantifica-
tion parameters are to date still largely confined to the 
research arena.

Several review papers are now available on 4D Flow 
CMR [7–12], detailing its advantages over 2D Flow [13] 
as well as descriptions of useful clinical applications, 
especially for aortic disease [14–21], but also congenital 
heart diseases [22–28], particularly in the neonatal popu-
lation [29], and other cardiovascular conditions [30–34]. 
We therefore will not be covering detailed benefits of 4D 
flow CMR and its clinical application in this consensus 
statement.

The previously published consensus statement [1] cov-
ers background information, clinical and scientific sig-
nificance, and potential utility. Its recommendations 
regarding patient preparation, 4D Flow CMR data acqui-
sition, data pre-processing, and flow visualization remain 
valid [1].

Since the publication of the original consensus state-
ment, the field of 4D Flow CMR and the size of its user 
base has grown, supported by advances in CMR scan-
ner hardware and coils, data acquisition and recon-
struction strategies, vendor support, and availability of 
commercial post-processing solutions. Key advances 
in the last five years include further acceleration and 
diversification in acquisition methods. However, the 
most important development has been that 4D Flow 
CMR is now clinically available and supported by the 
major vendors of CMR scanners. Additionally, post-
processing tools are commercially available, United 
States Food and Drug Administration (FDA) approved, 
European (CE-) marked for clinical use and in some 
countries, approved for reimbursement. These devel-
opments have enlarged the user base and paved the 
way for the more widespread clinical application of 4D 
Flow CMR, which is now used in the clinical routine 
at multiple centers worldwide. This is prompting large 
cohort, longitudinal and multi-center clinical studies. 
As the variety of acquisition and analysis platforms 
grows, standardized imaging acquisition, analysis, and 
publication approaches will simplify pooling data for 
meta-analysis studies and increase the validity of study 
results.

It is important to note that clinical and research 4D 
Flow CMR applications have differing priorities. Clini-
cal acquisitions need to be fast with reliable flow and 
velocity quantification. In research, scan duration is 
less important whereas comprehensiveness of data is 
prioritized. Conversely, validation is more complex 
in the research setting as there often is no predefined 
gold standard for comparison for advanced measures 
beyond velocity and flow.

This update statement builds on the previously pub-
lished consensus statement [1] and focuses on:

• Recommended acquisition parameters for clini-
cal use—with a growing number of clinical centers 
starting out in 4D Flow CMR we have summarized 
updated clinical parameter recommendations based 
on consensus from centers clinically using 4D Flow 
CMR.

• Clinical post-processing workflow—this section 
describes key elements to consider and follow when 
choosing a clinical post-processing platform and 
setting up a clinical workflow.

• Quality assurance and validation advice—with a 
growing number of different sequences and post-
processing platforms commercially available, we have 
further extended the advice for clinical quality assur-
ance and validation when starting out with 4D Flow 
CMR. Furthermore, we address the challenges faced 
in quality assurance and validation in the research 
setting.

• Integration into clinical practice—this section cov-
ers a selection of advice from centers that have inte-
grated 4D Flow CMR into the clinical workflow.

• Recommended publication standards—this section 
provides a checklist specific for 4D Flow CMR.

• Overcoming limitations and future considerations—
focusing on what is on the horizon for 4D Flow 
CMR.

• Appendix: 4D Flow CMR sequence options—since 
the last consensus statement, the options of avail-
able 4D Flow CMR sequences have considerably 
increased. This appendix, therefore, summarizes 
some aspects to consider when choosing a sequence 
prior to setting up a research study or clinical service.

This consensus update is based on published data, 
where available, and consensus experience. It aims to 
cover a large audience, including clinicians and scien-
tists interested in starting out in 4D Flow CMR as well as 
bringing together established groups in the area.

Advised acquisition parameters for clinical use
The choice of 4D Flow CMR acquisition parameters 
requires careful consideration of a balance between 
accuracy and scan time. For clinical use, it is advisable to 
keep the 4D Flow CMR acquisition to 5–10 min. Thereby 
it can easily be added to a clinical workflow, such as in 
the waiting period between gadolinium administration 
late enhancement enhancement (LGE) imaging, without 
interfering with or extensively prolonging the established 
protocols in the institution.
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Equipment and set‑up
The improved signal to noise ratio (SNR) at higher field 
strength such as 3T can be beneficial in the younger pedi-
atric setting given the higher spatial resolution needed 
due to the small body size anatomy but is less important 
in older children and adults where body size is sufficient 
for good SNR at lower field strengths.

Coil selection largely depends on local protocol and 
availability. The routine number of coil elements used 
in standard cardiac imaging is sufficient for good quality 
4D Flow CMR acquisition. The number of coil elements 
needs to be balanced against the ability of the scanner to 
reconstruct the data in a timely manner.

Volume coverage ideally includes at least the valves and 
aortic and pulmonary sinuses (even if focusing on intra-
cardiac anatomy) for data quality assurance purposes 
(see section “Quality assurance and validation advice for 
clinical use”). Appropriate field-of-view that fully covers 
the anatomy of interest (plus a couple of additional slices) 
can be confirmed using anatomical scout images on the 
scanner.

For ease of use, it is best to aim for standardized pro-
tocols which might need to be adjusted for individual 
pathologies. Congenital heart disease centers in particu-
lar might have a variety of protocols for different age 
groups and/or pathologies. These should all be individu-
ally validated (see section “Quality assurance and valida-
tion advice for clinical use”).

Scan parameters
Accuracy and precision in flow imaging are influenced 
by several physiological patient parameters. Different 
body sizes and heart rates influence spatial and tempo-
ral resolutions, SNR, and therefore velocity-to-noise ratio 
(VNR) [35, 36]. Hence, we recommend adjusting the spa-
tial resolution for different age groups. Voxels should be 
isotropic and at least 6 voxels should cover a vessel diam-
eter [37]. Specific resolution guidance based on the most 
common resolutions used in clinical centers are detailed 
in Table 1.

It is important to note here the difference between 
acquired resolution, based on the field-of-view and 
k-space matrix size, and the reconstructed resolution, 
which is often higher than the acquired due to the use of 
spatial interpolation during image reconstruction. This is 
an important distinction, since sequence performance is 
primarily defined by the acquired rather than the recon-
structed resolution. For completeness and easier compar-
ison, both acquired and reconstructed resolutions should 
be stated in scientific publications.

4D Flow CMR requires the selection of an upper veloc-
ity encoding limit (VENC) during scan prescription to 
avoid velocity aliasing. This setting will adjust the motion 

encoding gradients accordingly to the desired motion 
sensitivity. In non-contrast acquisitions, the VENC 
should be as low as possible to keep adequate VNR and 
improve accuracy while avoiding aliasing [36].

Choice of VENC should be close to the maximum 
velocity (< 25% above) [38] and can be guided by a pre-
vious imaging examination when available, such as a 
recently acquired echocardiogram or a previous CMR 
study. Otherwise, a 2D phase-contrast acquisition or 
rapid velocity scout sequence can be used at the aor-
tic valve or area of interest. If 4D Flow CMR is acquired 
without a previous 2D phase-contrast acquisition 
and stenosis is suspected, consider an initial VENC at 
250 cm/s. If no stenosis is suspected, the following VENC 
can be used as guidance:

• Large vessels (pulmonary artery and aorta): 150 cm/s 
[25]

• Dissection false lumen: 50–150 cm/s
• Venous blood flow (including extracardiac con-

duit and pulmonary arteries in Fontan patients): 
50–80 cm/s

• Intra-cardiac: 100–150 cm/s

Electrocardiographic (ECG) gating should be retro-
spective whenever possible to capture hemodynamics 
throughout the complete cardiac cycle [39–42]. Opera-
tors should monitor the ECG signal and acquisition time 
estimates to determine if electrodes require reposition-
ing, as poor ECG signals can lead to prolonged scans and 
reduced image quality and accuracy. Irregular heartbeats 
can be a challenge, but 4D Flow CMR acquisition can still 
be accurate in patients with atrial fibrillation [43] but is 
not always reliable. Prospective gating and arrhythmia 
rejection might be useful in these cases.

Respiratory motion suppression can improve image 
quality [44, 45] and does not automatically increase 
scan time, and guidance should be available from 
vendors or sequence developers whether respira-
tory motion suppression is advised for the specific 
sequence. In practice many clinical centres do not use 
respiratory motion suppression as it is not available 
from all vendors for all sequences. Furthermore, in 
patients with fast heart rates (HR; such as neonates or 
during stress or exercise with HR > 120 bpm) diaphrag-
matic respiratory navigators are often not feasible. If 
respiratory suppression is desirable, other respiratory 
gating methods such as self-gating or respiratory bel-
lows can be considered. When self-gating becomes 
readily available, this would be the recommended gat-
ing method.
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Contrast agent and flip angle
Advised scan parameters are summarized in Table 1.

As many acquisition parameters are likely to influ-
ence 4D Flow CMR acquisition, it is important to have 
consistent protocols which have undergone local quality 
assurance testing.

The spoiled gradient-echo sequence with short rep-
etition time (TR) generates phase-contrast angiograms 
without the need for contrast agents [46, 47]. SNR and 
VNR improve with T1 shortening achieved by adminis-
tering gadolinium-based contrast [48, 49] or superpara-
magnetic iron oxide agent (ferumoxytol) [50]. Therefore, 
contrast administration to enhance image quality can 
be useful (but is not essential), especially in challenging 
cases such as neonates and dissections to enhance image 
quality, but good image quality can be achieved without 
contrast administration especially when scanning at 3T 
[51, 52]. In adults, if contrast is given for other reasons, 
it is useful to perform the 4D Flow CMR acquisition after 
gadolinium-based contrast administration. It is impor-
tant to note, that contrast administration for 4D Flow 
CMR acquisition alone is not required especially as the 
wider CMR community is moving more towards non-
contrast acquisitions.

The standard flip angle for non-contrast 4D Flow CMR 
acquisition should be set around the Ernst angle which 
equates to a flip angle of around 7° for non-contrast 4D 
Flow CMR with repetition time and echo time chosen as 
short as possible. After contrast administration a higher 
flip angle is often beneficial, but this depends on contrast 

agent used and time past since administration. Several 
clinical centres use the following guidance: If acquiring 
4D Flow CMR directly after gadolinium administration, it 
is advisable to increase the flip angle to 15–25° 1.5T and 
12° at 3T. [29, 49, 53]. If 4D Flow CMR is acquired after 
LGE a lower flip angle (similar to non-contrast values) 
is likely needed. If using ferumoxytol a higher flip angle 
of around 15–25° is often required [54, 55]. In neonates, 
limits in specific absorption rate (SAR) often necessitate 
dropping the flip angle with ferumoxytol to 12° in this 
patient cohort [54].

Clinical post‑processing workflow
Data pre-processing steps are described in detail by the 
previous 4D Flow CMR consensus statement and this 
remains valid [1]. Key elements are summarized in Fig. 1.

Post-processing of 4D Flow CMR data includes the fol-
lowing steps: (1) background phase offset correction, (2) 
anti-aliasing if required, (3) segmentation, (4) visualiza-
tion (optional), and (5) quantification including an inter-
nal consistency check (Fig. 1).

There are several commercially available software pack-
ages for post-processing and analysis of 4D Flow CMR. 
Most software packages have regulatory approval for 
basic flow quantification in clinical routine. In addition, 
they allow visualization of blood flow and the analysis 
of various advanced research parameters such as flow 
eccentricity, vortices, kinetic energy (KE), flow compo-
nents as well as relative pressure distribution for research 
purposes. Many software packages now also include 

Table 1 4D flow acquisition parameters for large vessels and whole heart

Acquisition parameter Aim for Do not exceed Reason Limiting factor

Acquired spatial resolution

Adults whole heart 2.5  mm3 [2] 3  mm3 Accuracy Scan time

Adults’ vessels 2  mm3 2.5  mm3 Accuracy Scan time

Pediatric whole heart 2  mm3 [53, 79, 82] 2.5  mm3 [82, 167] Accuracy Scan time

Pediatric vessels 1.5  mm3 2  mm3 Accuracy Scan time, VNR

Neonates 0.75–1  mm3 [54] 1.5  mm3 Accuracy Scan time, VNR

Acquired temporal resolution 30 ms 50 ms (can be higher if aiming 
for visualization only)

Accuracy Scan time

Velocity encoding limit (VENC) Maximum expected velocity 10% higher than maxi‑
mum expected velocity, 
do not exceed 25%

VNR, to avoid aliasing Scan time, VNR

ECG gating Retrospective Complete ECG cycle included Reconstruction

Respiratory navigation Optional Accuracy Scan time

Contrast agent Consider in neonates, dissec‑
tion patients or other challeng‑
ing cases

Improved contrast Contrast adminis‑
tration contraindi‑
cations

Flip angle 7° non‑contrast
12–25° with contrast

25° SNR Contrast vs SNR
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valve tracking, circumventing the issue of through-plane 
motion and permitting valve motion to be factored in 
when computing flow, which improves accuracy espe-
cially in mitral and tricuspid valve assessment [56].

Step 1: Background phase offset correction
For accurate flow measurements, 4D Flow CMR requires 
correction for phase offset errors associated with eddy 
currents and concomitant gradient fields if not corrected 
during image reconstruction. While offset errors can be 
corrected by repeating the exam with a stationary phan-
tom and subtracting the flow measurements of the static 
tissue from the patient’s data [57], this is too time-con-
suming for clinical practice. Static-tissue interpolation 
offset correction can be applied during post-processing 
with equivalent performance [37, 58]. All software should 
have this capability using linear or polynomial fits to 
static tissue. Particular attention should be given to large 
fields-of-view where regions-of-interest may reside far 
away from the magnet isocenter as offset errors increase 
with distance from the magnet isocenter [59].

Step 2: Velocity anti‑aliasing
In cases where maximum blood flow velocity surpasses 
the chosen VENC, velocity aliasing can result in cor-
rupted velocity measurements. In these cases, phase 
unwrapping can improve the accuracy of the flow and 
velocity measurements [60–65]. Most software can 
detect a large shift in adjacent voxel velocity values and 
perform automatic correction. However, visual inspec-
tion of the peak systolic and diastolic cardiac phases is 
required to check all three primary velocity encoding 
directions for un-correctable velocity aliasing. Image 
regions affected by incorrigible aliasing, should not be 
considered for flow analysis.

Step 3: Segmentation
Depending on the software solution, evaluation of flow 
data starts either with 3D segmentation of the vessel or 
direct placement of regions of interest in the imaging 
volume delineating the vessel contour in 2D cross-sec-
tional planes. Appropriate regions of interest selection, 
orientation, and segmentation are important parts of the 
flow and velocity quantification process [66]. Care must 
be taken to select regions unaffected by artefacts, e.g., 
caused by partial volumes, metal implants, or motion. 
Vascular flow values should be measured in 2D planes 
that are orthogonal to the vessel. Regions of interest 
need to be propagated and adjusted throughout the car-
diac cycle to account for vessel motion. Centerline-based 
plane positioning and registration-based contour propa-
gation can support this process.

Valve tracking
Using retrospective valve tracking, a dynamic reformat-
ted 2D plane of through-plane velocity is created from 
the time-resolved 3D velocity data (Fig. 2). Two orthog-
onal cine views per valve (for instance, left ventricular 
(LV) two-chamber and four-chamber views for the mitral 
valve) should be used to track the valve annulus over 
the whole cardiac cycle. Misalignment between the cine 
views and the 4D Flow CMR data should be resolved by 
manual or automatic image registration. It is advised to 
quantify regurgitant jets separately, by defining a refor-
matted plane perpendicular to the regurgitant jet [67]. 
Aliasing in the regurgitant jet is common, as regurgitant 
flow is usually characterized by high blood velocity, tur-
bulence, and incoherent flow and in these cases indirect 
quantification is advised (see section “Step 5: Quanti-
fication” below). The regurgitant jet regions of interest 
should be segmented and propagated in the reformatted 
2D plane as described above (see Fig. 2). 

Step 4: Visualization
Visualization can be performed using multiple tools such 
as velocity-based color coding, maximum velocity pro-
jections (“velocity MIP”), instantaneous streamlines, and 
time-resolved pathlines. The differences between stream-
lines and pathlines are described in detail in the first 4D 
Flow CMR Consensus Statement [1]. We emphasize that 
streamlines do not represent flow pathways in pulsatile 
blood flow; keeping streamlines short minimizes the 
risk for misinterpretation. Visualization should include 
dynamic visualization of the complete 3D volume as well 
as localized visualization tools for the particular region 
of interest [68]. Visualization can serve as a quick qual-
ity assessment in cases where velocity values are inverted. 
Visualization facilitates the detection and understanding 
of blood flow alterations in different pathologies, such 
as shunts or valve insufficiencies. Further detailed back-
ground information of 4D flow CMR visualization can be 
found in the 2015 consensus statement [1].

Step 5: Quantification
Guided by the visualization of anatomy and blood flow, 
2D planes can be placed to measure flow parameters at 
anatomical landmarks or in areas of pathological flow. 
The most relevant clinical 4D Flow CMR-derived param-
eters are flow volumes and flow velocities that should be 
provided in the clinical report. Quantitative data should 
always be validated for internal consistency (see section 
“Quality assurance and validation advice for clinical use”).

The accuracy of blood flow can be compromised in 
certain flow geometries, and readers should be cautious 
of flow measurements in areas of high velocity flow jets, 
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Fig. 1 Post‑processing of 4D Flow CMR should always include correction for phase offsets and noise masking. Anti‑aliasing needs to be 
performed if aliasing is present in regions of interest. Segmentation can be performed for the whole vessel in 3D or on 2D vessel cross‑sections 
perpendicular to the course of the vessel. Visualization of flow, velocity and advanced parameters is optional but can help identify regions of peak 
velocities and insufficiencies. Quantification can be performed in 2D cross sections or in regions of the vessel. Parameters can be given averaged 
over the whole cardiac cycle (e.g. stroke volume) or maximum and minimum parameters (e.g. peak velocity)
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Fig. 2 Valve tracking procedure in 4D flow CMR. In preprocessing phase, velocity data is corrected for aliasing (1), phase offset correction (2) 
and misregistration (3). Annulus tracking (4) is performed for forward flow and backward flow is obtained by tracking the regurgitant jet (5). 
Velocity corrections are performed by subtracting through‑plane valve motion (6). Then, velocity mapping is performed on the reformatted 
2D through‑plane velocity images (7). Finally, the net forward volume among the four valves can be used as an internal check for consistency 
in the analysis (8)
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regions with substantial dephasing due to turbulence, and 
highly vortical blood flow [69], especially in ascending aor-
tic aneurysm or aneurysmal pulmonary arteries. In these 
circumstances, alternative flow measurements outside of 
regions of abnormal flow or combined use of ventricular 

volumetry may be necessary to guide clinical manage-
ment [70]. Examples include using superior vena cava and 
descending aortic flow as net forward flow in the aorta. 
For evaluation of valvular regurgitant volume both direct 
and indirect jet quantification methods are used [71].

Fig. 3 Internal consistency of measurements can be checked by comparing flow volumes at different locations in the same vessel or by comparing 
the sum of branch vessels to the main pulmonary artery
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Direct jet quantification
The direct jet tracking method should be used in regur-
gitant lesions with only one central jet such as aortic and 
pulmonary regurgitation, in functional mitral regurgita-
tion [72] or atrioventricular valve regurgitation after atri-
oventricular septal defect correction [73]. The advantage 
of this direct measurement approach is that no assump-
tions are made with respect to regurgitant jet morphol-
ogy or mass conservation through other valves or over 
the atrial or ventricular septum, and that flow quantifica-
tion over all four valves is performed from the same data-
set from the same average cardiac cycle.

Indirect quantification method
The standard CMR method for mitral regurgitation quan-
tification, here called indirect quantification, involves the 
subtraction of the aortic net LV ventricular stroke vol-
ume (SV) determined by LV cine short-axis volumetric 
assessment. Valve tracking has led to the improved indi-
rect method involving subtraction of aortic net flow from 
the mitral forward flow. In cases where there are multiple 
jets with different directions or the regurgitation jet has 
uncorrectable aliasing, we recommend using the indirect 
method with valve tracking through the mitral and aor-
tic valves as this has been shown to be more accurate in 
these cases [74, 75].

While using any 4D Flow CMR method for assess-
ment of valvular regurgitation, it is recommended to 
cross-check the quantification against standard meth-
ods. If there is a significant discrepancy in the quantifi-
cation of regurgitation volume between methods (> 15 ml 
or > 10%), it is recommended to revisit the analysis and 
investigate the cause of the discrepancy using the conser-
vation of mass principle (i.e. flow into and out of a cham-
ber should be balanced). The following equations can be 
used to check the consistency of flow data:

LV stroke volume (short-axis cine segmenta-
tion) = mitral forward flow + aortic backward flow = aor-
tic forward flow + mitral backward flow.

Retrospective valve tracking can be applied in patients 
with atrial fibrillation [76]. However, a cautious approach 
should be used as there is a possibility of underestimat-
ing flows. In these cases, relative flow quantification, for 
example, regurgitation fraction, is possibly more reliable 
than absolute numbers of regurgitation volume.

Quality assurance and validation advice for clinical 
use
Both initial validation and ongoing quality assurance are 
important aspects of clinical 4D Flow CMR [77]. This 
section builds and expands on the 2015 consensus state-
ment [1].

For incorporation into standard clinical practice, 4D 
Flow CMR acquisitions must meet quality thresholds 
that provide the interpreting clinician with confidence 
in both the qualitative and quantitative accuracy of the 
data. Accuracy in 4D Flow CMR can be influenced by the 
choice of vendor sequences [77], acquisition parameters 
[2] and postprocessing software [78]. Therefore, local val-
idation and ongoing quality assurance are an important 
part of the clinical 4D Flow CMR workflow.

Initial validation is advised to be undertaken when 
using a new sequence, updating a sequence (such as a 
significant sequence change with system updates), gradi-
ent servicing, applying significant changes in acquisition 
parameters or using a new post-processing platform:

We advise acquiring 10 datasets (healthy subjects and/
or patients without any intra- or extra-cardiac shunts) 
with both the institution’s standard 2D Flow and 4D 
Flow CMR including at least: ascending aorta, pulmo-
nary trunk, left branch pulmonary artery, right branch 
pulmonary artery, superior vena cava, descending aorta 
and pulmonary veins. If possible we also advise to rescan 
the volunteers/patients ideally after exiting and then re-
entering the scanner either on the same day or a defined 
short recall period (< 1 month).

Initial visual assessment of the velocity and magnitude 
images should include assessment of motion artefacts, 
wrap around artefacts and any aliasing in systole.

We advise to include 3 steps in the quantitative assess-
ment: (1) comparison to 2D Flow CMR, (2) within data-
set validation, (3) inter- and intra-reader comparison 
(when changing/updating post-processing platform). Ide-
ally, differences in flow assessment should be ≤ 5%. Scan-
rescan differences up to 10% are acceptable due to minor 
physiological differences between scans.

Comparison to 2D Flow CMR: We suggest compar-
ing forward flow and peak velocity for at least ascending 
aorta, pulmonary trunk, left branch pulmonary artery, 
right branch pulmonary artery, superior vena cava and 
descending aorta between 2D Flow and 4D Flow CMR 
in the 10 validation datasets. This captures arterial and 
venous flow with different flow velocities as well as a vari-
ety of vessel diameters (see Fig. 3). 

Within dataset validation: This makes use of the con-
servation of mass principle. Mass is neither created nor 
destroyed and so flow volumes should stay equal. There-
fore, the following forward flow comparisons can be 
made in all 10 datasets and should show equal flow:

• Aortic flow (add 5% for coronary flow if measuring 
above sinuses) = pulmonary flow

• Right + left pulmonary artery flow = main pulmonary 
artery flow
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• Branch pulmonary artery flow = pulmonary vein flow 
(If not equal check for pulmonary vein anomalies)

• Superior vena cava + descending aortic flow = ascend-
ing aortic flow

This allows the assessment of measurement planes in a 
variety of directions within the 4D Flow CMR dataset.

Furthermore, we advise placing 2–4 measurement 
planes in the ascending aorta between the sinuses of 
Valsalva and the 1st branching vessel. Again, using the 
conservation of mass principle, the flow volume should 
match in all planes (< 5% difference).

Inter- and intra-reader comparison: We advise each 
reader involved in the clinical service to complete the 
above flow validations in all 10 datasets twice at least 
1  week apart to evaluate any inter or intra-reader bias. 
Differences in flow assessment should be ≤ 5%.

Everyday quality assurance in every dataset acquired 
should at least include:

Initial visual assessment of the phase contrast and mag-
nitude datasets should include assessment of motion arte-
facts, wrap around artefacts and any aliasing during systole.

Quantitative assessment using within dataset validation 
using the conservation of mass principle. At least one of 
the above ‘within dataset’ forward flow comparisons can 
be completed. The choice of these depends on the under-
lying anatomy and physiology and is determined by the 
reading physician.

Integration into clinical practice
Considerations for integration into clinical practice
When embarking on integrating 4D Flow CMR into the 
clinical workflow, several considerations are important. 
Initial validation of the chosen 4D Flow sequence on the 
local CMR scanner is paramount (see section "Quality 
assurance and validation advice for clinical use"). 4D Flow 
CMR datasets are large and may require additional space 
on the hospital’s image storage solutions. Stored datasets 
need to be accessible by 4D Flow CMR analysis software 
which often requires integrated graphics processing units 
(GPUs) and higher processor powers than standard hos-
pital computers. An alternative is cloud-based 4D Flow 
CMR offered by some software vendors.

As with any new imaging technique, it takes a while for 
the teams involved to get confident with image acquisi-
tion and analysis [79]. Only when this is achieved should 
the data be used for clinical reporting. Initially, both 2D 
and 4D Flow CMR should be acquired and analyzed in 
parallel. All published prognostic values are based on 2D 
Flow CMR and the clinical team will need time to evalu-
ate whether 4D Flow CMR assessment can be used inter-
changeably with 2D Flow CMR in all or some of their 
patient cohorts.

Where does 4D Flow CMR fit in a clinical protocol?
Historically, 4D Flow CMR has been considered a 
research technique and thus placed at the end of clini-
cal exams after diagnostic sequences; however, with the 
emergence of clinically validated applications and post-
processing software, some centers are now adding 4D 
Flow CMR to routine clinical CMR protocols [79–82]. 
When deciding where to place 4D Flow CMR within a 
clinical CMR protocol there are several considerations, 
which take into account scan time and pathology-specific 
considerations:

1. Non-contrast 4D Flow CMR is sufficient in many 
scenarios. If administering gadolinium-based con-
trast agents for other clinical questions, 4D Flow 
CMR should be placed after the CMR angiogram or 
during the delay before myocardial LGE. It is impor-
tant to note that technical factors such as respiratory 
compensation, multi-VENC and large field-of-view 
increase scan time and may prohibit 4D Flow CMR 
acquisition during the 10-min post-gadolinium delay 
window.

2. If the clinical indication requires flow quantifica-
tion (e.g., shunt evaluation, quantification of valvular 
regurgitation) then 4D Flow CMR may take higher 
priority and be acquired earlier in the imaging pro-
tocol, especially if 4D Flow CMR is used in place of 
standard 2D Flow imaging.

3. In pathologies where 4D Flow CMR plays an adjunc-
tive role (e.g., aortic aneurysm), ensuring that all 
diagnostic sequences are completed before the acqui-
sition of 4D Flow CMR is a common approach

Quantitative analysis
Quantitative analysis of flow volumes and peak velocity 
can easily be integrated into standard CMR reporting 
templates. We advise reporting both 2D and 4D Flow 
CMR concomitantly until both imaging and clinical car-
diology teams feel confident in basing clinical decisions 
on 4D Flow CMR results alone.

More advanced parameters can be derived from 4D 
Flow CMR velocity maps using dedicated software, but 
these may not be formally approved yet for clinical use.

Qualitative analysis
To take full advantage of the comprehensive nature of 4D 
Flow CMR, users should interact with the 4D Flow CMR 
datasets that can be reformatted into any plane to derive 
the optimum qualitative patient data for display. This is 
not possible on standard viewing and analysis platforms 
accessible to clinicians using images for decision mak-
ing. We, therefore, recommend developing a workflow 
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to save useful 4D Flow CMR images/videos in DICOM 
format which can then be loaded onto standard view-
ing platforms. This makes 4D Flow CMR more acces-
sible to clinicians and can be used at multi-disciplinary 
team meetings even without a 4D Flow CMR specialist 
present. Especially in congenital heart disease qualitative 
analysis can be useful in delineating stenosed vessels in 
more detail, providing information on the exact position 
and length of flow acceleration. It also easily identifies 
any flow reversal.

Quality assurance and validation advice 
in the research setting
Several useful options exist for the validation of differ-
ent aspects of 4D Flow CMR, such as sequence develop-
ment, reconstruction algorithms and post-processing 
workflows. These options can broadly be categorized 
into (1) in  vivo studies, (2) phantom studies, and (3) 
computer simulations (summarized in Table  2). We 
emphasize that there is no single evaluation or valida-
tion methodology that can target all aspects of 4D Flow 
CMR. Instead, evaluation and validation need to be tai-
lored for the specific sequence, parameter, or application 
in question.

In vivo studies
In vivo studies are used to evaluate and validate new 
4D Flow CMR methods in comparison to other modali-
ties such as echocardiography, 2D Flow CMR, and other 
4D Flow CMR methods [83–85]. Furthermore, it is pos-
sible to use consistency criteria such as conservation of 
mass principles, given the fact that flow into and out of 
a closed system (e.g., the heart, or the aorta) must be the 
same [85, 86]. The main advantage of using in vivo stud-
ies for evaluation and validation is that it represents the 
final utility of the method. A challenging aspect of in vivo 
studies is that reference data is often not available when 
advanced hemodynamic parameters such as wall shear 
stress, turbulence stresses, intracardiac flow component, 
kinetic energy and vorticity are evaluated. Furthermore, 

we emphasize that in vivo validation of the capability of 
a sequence to measure basic parameters such as flow vol-
ume cannot be interpreted as evidence that the sequence 
permits accurate estimation of advanced hemodynamic 
parameters, and these require separate and targeted 
validation.

In vitro studies
In vitro phantom studies in idealized or anatomically 
accurate vascular and cardiac models, so-called flow 
phantoms, permit evaluation and validation in well-
known and repeatable flow conditions. An advantage of 
in-vitro phantoms is that long sessions with scans using 
many different parameter settings can be performed on 
the same flow setup. Another advantage is the possibil-
ity to validate post-processing software and compare the 
results against flow meter, “timer and beaker” and pres-
sure probe measurements, as well as other experimen-
tal fluid dynamics techniques, such as particle image 
velocimetry and direct pressure measurements [87–89]. 
A disadvantage is that in vitro phantoms typically do not 
have realistic surrounding tissue. Furthermore, we note 
that while advanced flow phantoms with realistic geom-
etry and pulsating flow are highly valuable, even simpli-
fied phantom experiments can provide valuable insight. 
Examples include a large container of stationary water or 
agarose gel for the evaluation of background phase off-
sets and rotating phantoms consisting of gel-filled wheels 
or rings [90, 91]. Finally, we encourage the continuing 
development of standardized 4D Flow CMR phantoms 
and pump setups that facilitates reproducible in-vitro 
flow experiments across multiple sites.

Computer simulations
Simulated 4D Flow CMR measurments in numerical 
velocity data, also referred to as synthetic phantoms and 
digital reference objects, permit detailed studies of the 
impact of sequence design and parameter settings in a 
fully known flow environment [92–95]. Another advan-
tage of this approach is that synthetic phantoms can be 

Table 2 Comparison of 4D Flow MRI Validation Methods

Validation method Advantages Disadvantages When to use (examples) Examples

In‑vivo Fidelity with respect to clinical 
or research use of the method

Physiological variability, commonly 
a lack of gold standard

Verification that method works 
in vivo

[83–86]

Phantoms Controllable, easier to get a gold 
standard than in‑vivo studies, even 
simple experiments can be of value

Realistic models challenging to con‑
struct and control

Evaluation variables/parameters 
in a repeatable setting in real MRI 
hardware

[87–91, 168]

Simulations Very controllable, different sources 
of error can be separated, underly‑
ing numerical velocity data serves 
as ground truth

Fidelity uncertain, computational 
cost

Rapid feedback during develop‑
ment, when the desired evaluation 
cannot be realized in a phantom 
setup or in vivo

[92–94, 169]
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created with a model of more realistic surrounding tis-
sue. This is relevant for reconstruction algorithms and 
processing tools. Hybrid in  vitro/synthetic phantoms in 
which in  vitro data are embedded into synthetic back-
grounds may also be considered. The main disadvantage 
of synthetic phantoms is the question of simulation fidel-
ity, i.e., how well the simulation results represent reality. 
Increased fidelity usually requires more computational 
resources. It can therefore be relevant to consider how 
complete the simulation needs to be and if the aim of the 
study permits any trade-offs between simulation time and 
completeness of the 4D Flow CMR simulations. We note 
that the generation of accurate numerical velocity data 
using computational fluid dynamics is a separate field of 
research. However, when used as input and reference in 
4D Flow CMR simulations, the physical accuracy of the 
numerical velocity data is of secondary importance.

In summary, the development of 4D Flow CMR meth-
ods can be guided by in  vivo studies, phantom studies, 
computer simulations, or a combination thereof. We rec-
ommend that all these approaches be considered in the 
evaluation and validation of new developments in 4D 
Flow CMR.

Recommended publication standards
In this section, we describe the essential and recom-
mended standards that should be adhered to for any 
scientific publication containing 4D Flow CMR. Recom-
mendations differ in parts between technical publications 
(often aiming to propose and evaluate a new technique) 
and clinical studies (applying 4D Flow CMR to clini-
cal questions). High-quality and standardized publica-
tions will enable easier replication of proposed sequence 
protocols for clinical use and facilitate easier and higher 
quality meta-analysis to move the field forward.

Where possible, sharing of published datasets, code 
and materials to replicate, verify and extend the research 
presented in the manuscript is encouraged.

Below are 4D flow CMR specific considerations:

Introduction
For studies based on a priori stated hypotheses, all 
hypotheses should be clearly stated when describing the 
aim(s) of the study.

Methods‑acquisition
All data processing methods that can affect the quality 
of the 4D flow CMR data should be described, includ-
ing correction methods for eddy currents, distortions 
resulting from gradient field non-uniformity, intravoxel 
dephasing and concomitant gradient fields, velocity alias-
ing, as well as noise filtering (if not using commercially 

available sequences and data processing software). Many 
parameters, including hardware specifics, acquisition 
parameters, and post-processing software, affect the 
image quality and properties of 4D Flow CMR data and 
should be reported as such. The essential and recom-
mended standards are listed in Table  3 and elucidated 
below. We specifically highlight that both acquired and 
reconstructed resolutions should be given, both for tem-
poral and spatial resolution.

Method‑data processing
Data processing can be performed by several commer-
cial CE- and FDA approved software packages, while in-
house developed tools enable techniques for research. 
Open-source software solutions facilitate reproducible 
research, and the availability of such tools should be clar-
ified in publications. For commercially available as well 
as open-source software, the software release version 
should be detailed.

Method‑quantification
After processing the data, hemodynamic parameters can 
be extracted from the velocity fields. A range of metrics 
can be derived, each with relevance depending on the 
specific application. Thus, a detailed description of the 
analysis methodology should be provided so that a simi-
lar analysis could be performed at other centers.

Methods‑statistics
Clinical diagnosis and/or outcome studies need to be 
designed with an adequate sample size resulting from a 
power analysis. The methods section should contain a 
statistics paragraph describing all used statistical meth-
ods appropriate for the study size.

Results
The results section should include the number of 
included and excluded subjects, as well as the reason for 
exclusion, the results of the data quality assurance assess-
ment, at least including a within-dataset validation (see 
section on "Quality assurance and validation advice in 
the research setting" and for clinical use), and inter- and 
intra-reader agreement for a subset of data (or refer-
enced to previous publication with the same technique 
in the same setting) should be included. Given the vari-
ety in algorithms and their performance, it is important 
to mention whether velocity aliasing was present and 
have an estimate of how well the velocity fields have been 
corrected.
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Besides the quantitative results, preferably shown in 
tables, well-made illustrations should be added of typi-
cal as well as extreme findings or participants. Movies 
should be included as supplementary material, if allowed 
by the publisher, to illustrate the behavior over the car-
diac cycle. The anatomy should be well-annotated, pref-
erably in combination with segmentation. Color bars 
should be included for quantitative parameters. If par-
ticle traces were used in the visualization, it should be 
clarified which particle traces were used (e.g., pathlines, 
streamlines).

Discussion
If acquisition settings are significantly different from 
these and previous recommendations [1] or vary between 
participants, this should be mentioned in the limitation 
section, and it should be discussed how this might affect 
the results.

References
References to methods and techniques should reference 
the original work.

These recommendation standards will contribute to 
consistently high-quality publications, will improve the 
review process, and allow for easier comparison of dif-
ferent publications. We would therefore like to stress the 
importance of following these standards.

Overcoming limitations and future considerations
4D Flow CMR is becoming more widely used in medi-
cal centers with the technical and clinical capabilities 
to incorporate its use into standard-of-care protocols 
for heart valve, aortic, pulmonary, and congenital heart 
disease. However, several challenges remain to achieve 
widespread adoption and application of 4D Flow CMR 
remain. This includes limited velocity dynamic range due 
to a single user-selected VENC, long and unpredictable 
scan times, data storage of large datasets especially in 
clinical work flows as well as manual and time-consum-
ing data processing (which can affect user confidence). 
Below we discuss several promising new developments 
which are ongoing to overcome these limitations.

Velocity dynamic range
Acceleration techniques enable reductions in acquisi-
tion time [55, 68, 96–109] or acquisition of additional 
data within the same total acquisition time. In particular, 
acceleration enables the acquisition of additional data to 
reduce the dynamic range issues associated with velocity 
encoding. Evaluation of altered cardiovascular hemody-
namics often requires measurement of flow across a wide 
range of velocities, e.g., high-velocity flow jets (up to 

400–600 cm/s) with adjacent regions of low circulating or 
venous flows (as low as 10 cm/s). Commonly available 4D 
Flow CMR techniques measure blood flow velocity based 
on a single pre-defined VENC, but acceleration tech-
niques have enabled 4D Flow CMR with dual- or multi-
VENC velocity encoding [110–116], i.e., acquisition 
of both low- and high-VENC data within a single scan. 
Multi-VENC reconstruction can generate 4D Flow CMR 
data with the favorable VNR of a low-VENC acquisition 
but without velocity aliasing. In addition to multi-VENC 
acquisitions, initial deep learning-based studies have 
demonstrated the potential of using physics-informed 
neural networks to reduce noise, enhance resolution and 
automatically unwrap aliased velocity values in 4D Flow 
CMR velocity data [117–119].

Respiratory and cardiac self‑gating
4D Flow CMR techniques are also being developed that 
permit respiratory and cardiac self-gating and thereby 
simplify and streamline acquisition for optimized clini-
cal workflows. Respiratory self-gating eliminates the need 
for respiratory navigators and can be achieved by repeat-
edly acquiring a central k-space line that corresponds 
to a projection of the image volume in the feet-to-head 
direction [85]. This has recently been incorporated in 
so-called five-dimensional “5D” and extra-dimensional 
“XD” Flow CMR which also permit the analysis of respir-
atory-driven changes in cardiovascular hemodynamics 
[120–124]. Cardiac self-gating can be achieved with simi-
lar principles as respiratory self-gating and has recently 
been incorporated in 4D Flow CMR [122, 125]. Fully self-
gated 5D free-running approaches [122, 126] that exploit 
compressed sensing reconstruction remove the need for 
respiratory navigators, have constant scan time, and are 
independent of the patient’s breathing pattern or heart-
rate, which makes it particularly well-suited to be inte-
grated as part of a clinical protocol while scan planning 
is much facilitated. However, at this juncture, reconstruc-
tion times are prohibitive for clinical use.

Accelerated data processing workflows
Current 4D Flow CMR data analysis workflows are often 
non-standardized and time-consuming, thus limit-
ing reproducibility and clinical translation. Addressing 
these limitations will require the development of efficient 
image analysis strategies with minimal user dependence. 
This is becoming feasible with advances in image process-
ing techniques. For example, automated segmentation of 
the aorta and pulmonary artery has been demonstrated 
with atlas-based as well as deep learning-based meth-
ods [127–129]. In addition to segmentation, machine 
learning has the potential to speed up and automate 
image processing tasks such as background phase offset 
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correction, although work in this area is still in an early 
stage and unpublished. Another time-consuming task for 
which machine learning has demonstrated impressive 
results is the reconstruction of highly undersampled 4D 
Flow CMR images from raw data in less than 1 min [130].

Summary/conclusion
4D Flow CMR has moved from “pretty pictures” to pro-
viding robust flow quantification in clinical practice. 4D 
Flow CMR has greatly benefitted from the advances in 
CMR acceleration making it feasible for clinical use. The 
worldwide 4D Flow CMR community has grown expo-
nentially since the last consensus statement. 4D Flow 
CMR is no longer just a tool for researchers but for cli-
nicians. This consensus statement aims to help clinicians 
initiate a 4D Flow CMR program in their institutions. 
Furthermore, it aims to set standards for both clinical 
and research settings to assure consistent high-quality 
4D Flow CMR output.

Appendix 1
4D Flow CMR sequence options
CMR is a relatively time-consuming medical imaging 
modality. Standard 4D Flow CMR requires particularly 
long scan times as it requires motion encoding gradi-
ents in three directions, respiratory motion suppression 
and the acquisition of multiple cardiac phases to capture 
hemodynamics throughout the cardiac cycle. Accelerated 
acquisition strategies are important for both research, 
and clinical practice and a vast variety of 4D Flow CMR 
sequences are now available. This section reviews impor-
tant considerations when choosing a 4D Flow CMR 
sequence for both research and clinical applications.

Flow encoding
Multiple approaches are in use that can achieve three-
directional flow encoding in phase-contrast CMR [131]. 
The most straightforward method for three-directional 
motion encoding is the simple 4-point method which 
employs three acquisitions with motion encoding gra-
dients consecutively applied in three orthogonal direc-
tions and one additional velocity insensitive reference 
acquisition to remove phase from other sources. In 
addition to the velocity vector, this type of asymmetric 
velocity encoding scheme enables measurements of tur-
bulent kinetic energy [131–133]. Alternatively, a sym-
metric scheme with a reference acquisition that is motion 
encoded along all three axes and three acquisitions in 
which the polarity of the velocity encoding gradient along 
one axis is switched per acquisition achieves the same net 
velocity encoding with smaller velocity encoding gradi-
ents and, hence, results in shorter echo time (TE), shorter 

repetition time (TR), and potentially also reduced eddy 
current effects. Another alternative that uses 4 acqui-
sitions is the so-called Hadamard scheme, in which the 
polarity of the velocity encoding gradient along two axes 
are switched per acquisition and all four acquisitions are 
combined to reconstruct velocity in a given direction. 
It should be noted that the velocity aliasing pattern for 
Hadamard and other multi-directional velocity encoding 
schemes is complex and requires additional processing 
steps to correct for [131]. Clinical users need to be aware 
that commercial softwares do not support phase unwrap-
ping for Hadamard velocity encoding sequences.

There are advantages of acquiring additional motion 
encodes beyond standard 4-point encoding, but they 
come at the expense of prolonged scan times. For 
example, the use of 5-point encoding demonstrated 
an increase in VNR by 25% with increases in scan time 
[115]. Furthermore, dual or multi VENC acquisitions in 
which all three velocity encoded acquisitions are repeated 
with two or more VENC settings also target an improve-
ment of VNR by combining the data acquired with dif-
ferent VENC using automatic phase-unwrapping by 
means of the high VENC data [110, 111, 114]. This may 
be useful in clinical applications where the accuracy of 
both low and high-velocity measures are of importance. 
The broad dynamic range obtained by this approach can 
also be advantageous for concurrent velocity and turbu-
lent kinetic energy measurements. Finally, schemes with 
motion encoding along with a minimum number of six 
non-collinear axes, such as six-directional icosahedral 
(ICOSA6) [134], enables the quantification of all com-
ponents of the Reynolds stress tensor. For clinical appli-
cation a sequence based on simple four-point encoding 
currently remains favorable.

k‑space sampling
The acquisition scheme in 4D Flow CMR is typically 
based on the robust and well understood so-called spin-
warp or Cartesian trajectory. Unfortunately, scan times 
are long because only a single line of k-space is acquired 
for each radio-frequency excitation. Partial k-space 
acquisitions in the phase- and frequency-encoding direc-
tions can reduce scan time or increase temporal resolu-
tion and reduce certain artefacts in Cartesian 4D Flow 
CMR. For example, partial k-space acquisitions in the 
frequency-encoding directions, termed partial Fourier 
or fractional echo acquisition, reduce TE and intravoxel 
dephasing that can occur in complex and turbulent flows.

Non-Cartesian sampling patterns have some compel-
ling properties, particularly for accelerated imaging, as 
well as disadvantages. Radial trajectories [135] reduce 
apparent motion artefacts and enables accelerated imag-
ing through radial undersampling, retrospective gating to 
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the cardiac and respiratory cycle [122, 136], physiologi-
cal self-gating [122, 137], advanced motion correction, 
and short TE imaging with center out trajectories [138, 
139]. Spiral sampling trajectories [140] also allow for 
short TE imaging and undersampling. In addition, they 
enable long readouts for improved scan efficiency when 
compared to radial sampling. Both, radial and spiral tra-
jectories are more sensitive to trajectory errors and arte-
facts from off-resonance effects compared to Cartesian 
trajectories and require computationally more demand-
ing reconstruction engines.

Accelerated imaging
Several approaches can be used to reduce scan time in 
4D Flow CMR, at the cost of image quality and often-
increased reconstruction time.

With echo planar imaging [83, 98, 99], multiple lines 
in k-space are acquired after a single excitation, thereby 
substantially increasing the data acquisition efficiency. 
Multi-echo acquisitions can also be used with radial 4D 
Flow CMR acquisitions [100] while a spiral trajectory 
achieves similar gains in efficiency by simply lengthen-
ing its single readout window. These approaches are 
ultimately limited by the irrecoverable T2* decay and 
phase disruptions of the signal during extended read-
outs. Echo planar imaging with a modest EPI factor of 
up to 5 appears useful to speed up 4D Flow CMR data 
acquisition in regions of normal cardiac blood flow and 
especially when the acquisition volume can be planned in 
such a way, that anticipated main flow in readout direc-
tion can be avoided [99, 141–143]. We therefore advise 
against the use of echo planar imaging for high flow 
velocity in anatomies where the main flow direction can 
change with respect to the gradient directions, such as in 
the ascending aorta and aortic arch.

The use of receiver coil arrays enables accelerated 
acquisitions with parallel imaging techniques [101–103]. 
Parallel imaging has found widespread adoption to 
reduce scan times for velocity encoded CMR [104] as 
well as other cardiovascular and generic CMR applica-
tions with sufficient SNR and can be used with Cartesian 
and Non-Cartesian trajectories.

Acceleration approaches that exploit spatial and tem-
poral redundancy, such as k-t BLAST (Broad-use Linear 
Acquisition Speed-up Technique) and k-t SENSE (SEN-
Sitivity Encoding) [105] were quickly adapted to phase-
contrast CMR [106, 107, 144]. More advanced derivatives 
such as k-t generalized autocalibrating partially paral-
lel acquisition (GRAPPA) [145, 146], parallel CMR with 
extended and averaged k-t generalized autocalibrating 
partially parallel acquisition (PEAK GRAPPA) [145], and 
kt principal component analysis (kt-PCA) [147] have 
been used to highly accelerate 4D Flow CMR, with less 

residual temporal smoothing and underestimation of 
peak velocities and flow [148]. Our experience has been 
that an acceleration factor of R = 3 is approaching the 
limit for bulk flow measurements with SENSE.

Compressed sensing (CS) is another approach that uti-
lizes data undersampling with a constrained reconstruc-
tion for faster imaging [108] and is now used frequently 
to accelerate 4D Flow CMR [70, 149]. Radial [150] and 
spiral [96] acquisitions are well suited for CS as the non-
Cartesian acquisitions allow for more flexibility in the 
sampling pattern and better promote incoherent under-
sampling artefacts achieved with pseudo-random sam-
pling. Local low-rank reconstructions push the envelope 
even further [109] in reducing scan times or for gener-
ating datasets with multiple velocity encodes [151] or 
ultrahigh temporal resolutions [152]. Similar to kt accel-
eration methods, potential systematic underestimation of 
peak velocities and flow with CS need to be considered 
when interpreting the results [153]. Finally, deep learning 
may serve as an alternative to traditional reconstructions 
and has shown promise [130].

Respiratory motion suppression
In cardiovascular 4D Flow CMR, different respiratory 
motion suppression methods can be used to minimize 
breathing artefacts. Diaphragmatic respiratory naviga-
tors use a separate CMR acquisition once per heartbeat 
to follow the motion of the lung-liver interface. That 
signal is analyzed in real-time and used to accept or 
reject data based on a predefined acceptance window 
[154–156]. While navigators mitigate respiratory motion 
artifact, they can result in highly variable and prolonged 
scan times which can be minimized using a smaller win-
dow for the center of k-space [45, 157]. Traditional res-
piratory navigator temporal sampling is limited as only 
1–2 respiratory positions are sampled per cardiac cycle. 
Consequently, inherent gating techniques, including self-
gating, which typically tracks respiratory motion using 
the center of k-space or frequent 1D projections in the 
direction of diaphragmatic motion, have gained traction 
in recent 4D Flow CMR sequence development [55, 123, 
125, 158–163]. Alternatively, optical tracking or respira-
tory bellows that continuously track abdominal motion 
offer motion tracking with high temporal resolution 
without interfering with the CMR signal [164]. However, 
shallow abdominal breathing can cause drifts and errors 
in motion tracking.

Respiratory ordered phase encoding, which selec-
tively samples different parts of k-space based on res-
piratory position, has been adopted by multiple vendors 
to improve scan efficiency and image quality [40–42]. 
Recently, CS and motion correction have been combined 
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to improve scan efficiency by including all data through-
out the respiratory cycle with success in pediatric 
patients [55]. It is also worth noting that 4D Flow CMR 
without respiratory gating has demonstrated reasonably 
accurate intracardiac and vascular flow quantification in 
the chest with reduced scan times [148, 165, 166].
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