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Abstract 

Background Cardiomyopathy is the leading cause of death in Duchenne muscular dystrophy (DMD). Cardiac 
magnetic resonance (CMR) parametric mapping sequences offer insights into disease pathophysiology. We propose 
a novel approach by leveraging T2 mapping in conjunction with T1 and extracellular volume (ECV) mapping to per‑
form a virtual myocardial biopsy. While previous work has attempted to describe myocardial changes in DMD, our 
inclusion of T2 mapping enables comprehensive categorization of myocardial tissue characteristics of fibrosis, edema, 
and fat to better understand the pathological composition of the myocardium with disease progression.

Methods DMD patients (n = 49; median: 12 years‑old) underwent CMR, including T1, T2, and ECV. Categories were 
defined as normal, isolated high T1 (normal ECV, high T1, normal T2), fibrosis (high ECV, normal or high T1, normal T2), 
edema (normal or high ECV, normal or high T1, high T2), fat (normal ECV, low T1, high T2) or fibrofatty (high ECV, low 
T1, high T2).

Results Median left ventricular ejection fraction (LVEF) was 59% with 27% having LVEF < 55%. Those with normal LVEF 
and no late gadolinium enhancement (37%) were younger in age (10.5 ± 2.6 vs. 15.0 ± 4.3 years‑old, p < 0.001). Native 
T1 was elevated in at least one slice in 82% of patients. Those with high T2 at any slice (27%) were older (p = 0.005) 
and had lower LVEF (p = 0.005) compared with subjects with normal T2 (73%). The most common myocardial char‑
acterization was fibrosis (43%) followed by isolated high T1 (24%). Of the 13 with high T2, ten were categorized 
as edema, two as fibrofatty, and one as fat.

Conclusion CMR parametric mapping sequences offer insights into Duchenne cardiomyopathy pathophysiology, 
which should drive development of therapeutic interventions aimed at these targets. Myocardial fibrosis is common 
in DMD. Patients with elevated T2 were older and had lower LVEF. Though fat infiltration was present, the majority 
of subjects with elevated T2 met criteria for myocardial edema.
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Introduction
Duchenne muscular dystrophy (DMD), an X-linked myo-
pathy, affects approximately 1 in 5000 live male births 
[1–3]. The clinical phenotype of DMD can include mus-
cular weakness, growth delay, cognitive impairment, 
respiratory failure, and cardiomyopathy. Cardiopulmo-
nary disease is the most common cause of mortality in 
this population [4, 5]. With targeted ventilatory strategies 
improving life expectancy, prognostic and diagnostic car-
diac testing has become increasingly critical [4–8].

The underlying pathogenesis of skeletal muscle disease 
is relatively well understood, with dystrophin loss lead-
ing to destabilization of the sarcolemma. The progres-
sion of disease has also been relatively well described, 
with recurrent muscle use leading to a cycle of cellular 
damage and repair that eventually leads to necrosis and 
fibrofatty replacement of skeletal muscle tissue. Presum-
ably, the pathogenesis of myocardial progression is simi-
lar, but it is less well defined for a number of reasons: 
animal models do not completely mimic human disease 
and human cardiac autopsy and biopsy samples through 
the disease course have limited availability [9–11]. Prior 
work has postulated that late gadolinium enhancement 
(LGE) represents fibrosis, but the known fatty infiltration 
in skeletal muscle questions whether edema and fat play a 
role in progression of myocardial disease and specifically 
whether LGE by CMR is a combination of fat and fibro-
sis. Indeed, early reports from autopsy results from eight 
DMD patients consistently demonstrated fibrosis and 
fatty replacement of the myocardium with early fibrotic 
changes taking place at the epicardial-myocardium junc-
tion [11].

Cardiac magnetic resonance (CMR) parametric map-
ping sequences, such as native T1, T2, and extracellular 
volume (ECV) mapping, allow for detailed tissue char-
acterization and may allow for a more comprehensive 
assessment of DMD disease progression compared to 
echocardiography. Native T1 increases with fibrosis and 
edema and decreases with fat, while ECV increases with 
fibrosis and edema and remains unchanged with fat [12]. 
Previous work from our institution has shown higher 
mean native T1 and ECV in DMD patients compared 
to controls [13]. A recent publication demonstrated 
decreasing native T1 on serial CMR with increasing LGE, 
which the authors hypothesized was due to fatty replace-
ment of myocardium [14]. However, this study was per-
formed in a small population and did not include T2 
mapping. T2 values increase with both fat and edema and 
the addition of T2 mapping gives additional, critical data 
to better understand myocardial disease progression. The 
combination of all 3 parameters in essence allows the 

performance of a non-invasive or “virtual” biopsy at vari-
ous timepoints (Fig. 1).

Comprehensive parametric mapping, including T2 
mapping, can help answer whether edema and fat play a 
role in the progression of DMD cardiovascular disease. 
These sequences can define the pathological progression 
of DMD cardiomyopathy, thus providing a roadmap for 
the future development of therapies that can arrest myo-
cardial progression. Understanding the natural history of 
myocardial changes in this population may help direct 
timing and choice of pharmacologic intervention. More 
importantly, a better understanding of disease progres-
sion could help researchers identify novel, targeted thera-
pies. Through this virtual biopsy, we aim to characterize 
the myocardial composition in DMD cardiomyopathy 
by evaluating the pathological changes that occur glob-
ally as well as in regions of interest with LGE and focal T2 
elevation. We hypothesized that myocardial tissue char-
acterization would demonstrate a progression similar 
to skeletal muscle, with evidence of edema, fibrosis, and 
fatty infiltration.

Fig. 1 Myocardial changes defined by parametric mapping 
sequences. This figure demonstrates how T1, T2, and ECV can be 
utilized to define myocardial tissue composition. Quantification of T1, 
T2, and extracellular volume fraction (ECV) allow for characterization 
into normal, isolated high T1, fibrosis, fat, fibrofatty, and edema 
categories. Native T1 is on the X‑axis, T2 is on the Y‑axis, and ECV 
value is represented by the size of the circle. The cut‑off for high 
and low native T1 is represented by the solid and dotted vertical 
lines (900 ms and 1050 ms, respectively). The dashed horizontal line 
indicates threshold for high versus normal T2 (49 ms). The cut‑off 
for normal ECV is 28.5%. The overlap between the fibrosis and high 
T1 group in the figure represents the similar T1 and T2 times for these 
two categories, which are differentiated by ECV value. Similar 
methodology was applied for fat versus fibrofatty
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Methods
Patient selection
The Institutional Review Board approved this study. 
The majority of DMD subjects were enrolled prospec-
tively (n = 45); additional DMD subjects who had signed 
consent for research CMR but were not enrolled in this 
specific prospective natural history study (n = 4) were 
also included. This natural history study was focused 
on collecting prospective clinical and CMR data for 
DMD boys to track longitudinal progression of dis-
ease. Enrollment was completed between November 
2014 and November 2018. Consent was obtained for all 
participants; those under 18 years of age signed an age-
appropriate assent form. DMD subjects able to undergo 
CMR without sedation or anesthesia with a clinical phe-
notype and confirmation with either genetic testing or 
muscle biopsy were included. Subjects were excluded 
from enrollment with a contraindication to CMR with 
contrast. Clinical data were collected from the elec-
tronic medical record.

CMR acquisition and analysis
CMR was performed on a 1.5 Tesla Siemens Avanto 
(Siemens Healthcare Sector, Erlangen, Germany) or a 
1.5 Tesla Siemens Avanto Fit. CMR protocol included 
functional imaging performed as previously described 
using balanced steady-state free precession imaging 
[15]. Intravenous gadolinium contrast was adminis-
tered through a peripheral intravenous line (Gadobutrol 
0.15  mmol/kg or gadopentate dimeglumine 0.2  mmol/
kg). Late gadolinium enhancement (LGE) was performed 
using single shot inversion recovery (optimized inver-
sion time to null myocardium) and phase sensitive inver-
sion recovery (inversion time of 300 ms) imaging in the 
4-chamber, 3-chamber, and 2-chamber planes as well as 
the short axis stack. Segmented inversion recovery (opti-
mized inversion time to null myocardium) was also per-
formed in the same slices as the parametric mapping. T2 
and T1 mapping were performed in the same location at 
the base, mid-LV, and apex in the short axis plane, with 
T1 mapping repeated 15  min after contrast. All CMR 
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Fig. 2 Myocardial characterization. Categorization performed with prespecified tissue characterization parameters. Initial dichotomization based 
on presence of high or normal T2 time with normal defined as ≤ 49 ms. Patients were then filtered by native T1 time (normal 900–1050 ms) 
and extracellular volume fraction (ECV; normal ≤ 28.5%). Color coding represents myocardial composition defined with light blue as normal, red 
as fibrosis, dark blue as isolated high T1, orange as fibrofatty, yellow as fat, and green as edema
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post-processing was performed blinded to clinical data 
by an image analyst with all analyses verified by a cardiol-
ogist with > 10 years of experience (JHS). Ventricular vol-
umes and function were calculated using Medis QMass 
(MedisSuite 2.1, Medis, Leiden, The Netherlands). T1, 
T2, and ECV maps were analyzed using QMaps (Medis). 
The T1, T2, and ECV for the entire slice (base, mid, and 
apex) were evaluated. Next, areas of LGE were local-
ized on PSIR images and regions of interest (ROIs) were 
placed in these areas on the native T1, T2, and ECV 
maps. This was done to better characterize the pathologic 
changes associated with LGE. Finally, any focal areas of 
T2 elevation were identified on T2 maps and ROIs were 
placed on the T2 map as well as T1 and ECV maps. 
CMR acquisition and image post-processing is further 
described in the supplemental methods section.

Normal values for T1 and T2 were derived from 54 pro-
spectively enrolled healthy controls of varying ages (range 
7–56 years-old (y/o)) and sex (n = 29 male) as per the most 

recent parametric mapping consensus statement [12]. Nor-
mal values for ECV were obtained from the literature and a 
small cohort of local healthy controls [12, 16]. Patients were 
categorized by pre-specified T1, T2, and ECV parameters 
(Fig. 2) based on normal values. Normal parameters used 
for this study were T1 times between 900 and 1050  ms, 
T2 times < 49  ms, and ECV < 28.5%. These normal values 
were derived from normative data in our laboratory (native 
T1, T2, and ECV) as well as data reported in the literature 
(ECV only). For native T1, the normal range was defined 
as 2SD above and below the mean (the highest and lowest 
mean values from the base, mid, and apical slices were used 
in order to minimize false positives). For T2, the normal 
range was defined as 2SD above the highest mean. For ECV, 
a cut-off of 28.5% was chosen as this was 3SD above the 
mean and consistent with contemporary published reports 
from similar magnets. These values have been agreed upon 
by both pediatric and adult cardiologists at our institution 
to appropriately identify myocardial disease.

Fig. 3 Scatterplot of tissue characterization parameters. Native T1, T2, and extracellular volume fraction (ECV) measurements for each patient. 
Native T1 is on the X‑axis, T2 is on the Y‑axis, and ECV value is represented by the size of the circle. The cut‑off for high and low native T1 
is represented by the solid and dotted vertical lines (900 ms and 1050 ms, respectively). The dashed horizontal line indicates threshold for high 
versus normal T2 (49 ms). Each patient categorization is represented by color as demonstrated in the legend and as explained in Fig. 1
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Individuals were first characterized by T2 values. 
Elevated T2 for any slice served as inclusion criteria for 
high T2 categorization. T1 values served as second tier 
characterization tool. Low T1 at any slice took precedent 
over T1 time at other slices categorizing the individual 
as low T1. If there was elevated T1 in any slice, without 
low T1 time at any slice, the individual was placed into 
the high T1 category. ECV percentage was dichotomized 
as normal or high based on a threshold of 28.5% [16, 17]. 
Figures 1 and 2 demonstrate how these three parametric 
mapping techniques were used to categorize individu-
als into normal, isolated high T1, fibrosis, fat, fibrofatty, 
or edema. A sub-analysis was performed with catego-
rization for individual slices with longitudinal follow-
up. Normative strain values were derived from our own 
institutional data and the literature [18]. Abnormal strain 
values were considered to be greater (less negative) than 
− 18%, which is our labs normal cut-off.

Statistical analysis
Demographic variables were compared using Wilcoxon 
rank-sum test for continuous variables and Chi-square 
for categorical variables. Continuous variables compared 
between T2 groups were compared with Wilcoxon rank-
sum test. Slice average tissue characterization parameters 
were compared to LGE and T2 ROIs within the same 
patient by Wilcoxon signed-rank test. Spearman’s rank 
correlation was used to estimate the correlation between 
continuous variables. Comparison of left ventricular 
ejection fraction (LVEF) and age between categories was 
completed with analysis of variance (ANOVA) followed 
by pairwise comparison of means with Tukey post-hoc 
testing. Statistical analysis was performed using Stata 16 
(Stata Corporation, College Station, Texas, USA). Sta-
tistical significance was achieved with p < 0.05. Myocar-
dial composition category plots (Figs. 1, 3) were created 
using Prism. All data were securely stored in a REDCap 
(Research Electronic Data Capture) database [19].

Results
Demographics
Forty-nine individuals with DMD met inclusion/
exclusion criteria. The median age at first CMR was 
12  years-old (interquartile range (IQR): 10.4–16.3). Full 
demographic characterization is available in Table 1.

CMR measurements and tissue characterization
Median LVEF was 59% with 13 patients having LVEF less 
than 55% at time of first CMR. Age was inversely related 
to LVEF (ρ = − 0.44, p = 0.002). The most common areas 

of LGE are shown in Table 1. Thirty-one DMD patients 
(63%) had at least one segment with LGE. Patients 
with LGE were older (median age 14.4 y/o vs.10.2 y/o; 
p < 0.001). As previously described, the basal and mid 

Table 1 Patient characteristics

Patient characteristics and measurements at first cardiac MRI for 49 patients. 
Continuous variables presented as median [IQR] and categorical variables 
as count (frequency). ACEi Angiotensin converting enzyme inhibitor, 
ARB angiotensin receptor blocker, BSA body surface area, LV left ventricle, 
RV right ventricle

Characteristic Value

Age 12.0 [10.4–16.3]

Height (cm) 145 [127–158]

Weight (kg) 47.8 [35.6–64.5]

BSA calculated (Haycock) 1.4 [1.2–1.7]

Race

 Caucasian
 African American
 Asian
 Other

43 (92%)
3 (6%)
2 (4%)
1 (2%)

Ethnicity

 Hispanic/Latino 6 (12%)

Medications

 Steroids
 ACEi
 Beta‑blocker
 Aldactone
 ARB
 Aspirin
 Lasix

31 (63%)
26 (53%)
13 (27%)
6 (12%)
3 (6%)
3 (6%)
1 (2%)

LV ejection fraction (%) 59 [54–61]

LV cardiac index (L/min/m2) 3.5 [3.0–4.2]

Indexed LV end diastolic volume (ml/m2) 61 [55–73]

Indexed LV end systolic volume (ml/m2) 25 [22–32]

LV mass indexed (g/m2) 45 [41–52]

RV ejection fraction (%) 59 [55–62]

Late Gadolinium Enhancement
 Basal anterior
 Basal anteroseptal
 Basal inferoseptal
 Basal inferior
 Basal inferolateral
 Basal anterolateral
 Mid anterior
 Mid anteroseptal
 Mid inferoseptal
 Mid inferior
 Mid inferolateral
 Mid anterolateral
 Apical anterior
 Apical septal
 Apical inferior
 Apical lateral
 Apex

31 (63%)
11 (22%)
7 (14%)
7 (14%)
21 (43%)
28 (57%)
27 (55%)
9 (18%)
5 (10%)
9 (18%)
22 (45%)
30 (61%)
28 (57%)
10 (20%)
9 (18%)
11 (22%)
14 (29%)
7 (14%)
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lateral walls were the most common locations for LGE, 
with the septal segments less often involved [20]. Using 
the full width half maximum technique, the median LGE 
in subjects with LGE was 28% IQR [15–35%].

High native T1 time was detected in at least one seg-
ment in 48 of 49 patients. Similar to the distribution of 
LGE, the highest areas of native T1 were the anterolateral 
and inferolateral segments of the basal and mid slices. 
Forty patients (82%) had at least one slice with elevated 
T1 with the base being the most common slice (base 
n = 33, mid n = 26, apex n = 21). Thirty-five patients (71%) 
had elevated T2 in at least one segment and 13 patients 
(27%) had elevated T2 in at least one slice at first CMR. 
The highest T2 values by slice and segment were seen at 
the apex (Table 2; Additional file 1: Table S1). While the 
base was the most common location for elevated T1, no 
individual had elevated T2 of the entire basal slice (focal 
elevations were detected at the base as described below). 
All 13 patients with elevated T2 had elevation in the api-
cal slice, while four of these 13 patients had concomitant 
elevation at the mid slice. Average slice strain values were 
elevated (less negative or worse) at each slice compared 

to normal values, with a gradient from base to apex with 
apical strain more preserved (Table 2). There was no cor-
relation between strain and parametric mapping values 
(T1, T2, and ECV). There was no significant difference 
between strain values between the different categories 
(Table 3). Use of steroids was not associated with a signif-
icant difference in strain values at the base, mid, or apex.

Figure 2 demonstrates the characterization performed 
utilizing T1, T2, and ECV. The most common charac-
terization (Fig.  3) was fibrosis (n = 21/49, 43%) followed 
by isolated high T1 (n = 12/49, 24%). Of the 13 subjects 
with high T2, ten were categorized as edema, two as 
fibrofatty, and one as fat. Normal tissue characterization 
parameters were found in three patients. The difference 
in age between the categories did not reach statistical sig-
nificance (p = 0.06; Table 3; Fig. 4A). There was a signifi-
cant difference in LVEF between categories by ANOVA 
(p < 0.001; Table  3; Fig.  4B). Post-hoc testing demon-
strated LVEF in the fibrofatty group was significantly 
lower when compared to each group (p < 0.05); however, 
no other inter-group LVEF difference was significant.

Table 2 Tissue characterization parameter measurements

Characteristics at first MRI. Continuous variables presented as median [IQR]. ECV, extracellular volume fraction

Native T1 (ms) T2 (ms) ECV (%) Strain (%)

Global base 1072 [1037, 1100] 43.4 [41.8, 45.4] 29.0 [24.5, 34.0] − 13.5 [− 15.9, − 12.1]

Global mid 1057 [1021, 1094] 44.4 [42.7, 46.0] 29.0 [24.6, 32.5] − 15.5 [− 17.7, − 13.1]

Global apex 1047 [1000, 1099] 47.2 [45.1, 49.9] 29.8 [26.4, 34.0] − 16.5 [− 18.6, − 14.0]

Table 3 Characteristics by myocardial categorization

Characteristics based on proposed myocardial categorization at the time of first CMR. Continuous variables presented as median [IQR]; categorical variables presented 
as number (%). CMR1, first cardiac MRI; ECV, extracellular volume fraction; LGE, late gadolinium enhancement; LV, left ventricle

Characteristic Normal (n = 3) High T1 (n = 12) Fibrosis (n = 21) Edema (n = 10) Fat (n = 1) Fibrofatty (n = 2)

Age (years) 11.5 [8.5–14.3] 11.7 [9.8–14.7] 11.0 [9.6–15.0] 14.6 [12.0–21.4] 14.0 18.5 [17.8–19.1]

Weight (kg) 57.0 [33.2–66.5] 47.9 [40.2–70.1] 42.7 [30.5–52.3] 52.6 [38.1–82.7] 73.2 76.6 [64.5–88.6]

Steroid use at CMR1 3 (100%) 11 (92%) 12 (57%) 4 (40%) 0 (0%) 1 (50%)

LV Ejection Fraction 
(%)

66 [64–67] 60 [59–62] 59 [55–61] 55 [49–57] 68 36 [24–48]

LGE present 1 (33%) 5 (42%) 14 (67%) 9 (90%) 0 (0%) 2 (100%)

LGE (%) 9.77 12.5 [9.3–25.1] 30.2 [19.5–36.4] 28.2 [24.1–38.6] – 44.7 [28.0–61.4]

Basal strain − 17.2 [ − 19.1, − 15.0] − 13.6 [− 15.7, − 12.6] − 13.4 [− 15.8, − 12.4] − 13.6 [− 16.1, − 10.6] − 13.3 − 8.9 [− 12.1, − 5.6]

Mid strain (%) − 18.6 [− 18.8, − 17.3] − 16.7 [− 18.6, − 13.6] − 14.6 [− 16.9, − 13.0] − 14.7 [− 16.8, − 11.3] − 15.5 − 8.5 [− 13.1, − 3.9]

Apical strain (%) − 18.6 [− 19.7, − 18.1] − 17.6 [18.9, − 14.6] − 16.2 [− 18.0, − 13.5] − 15.9 [− 19.2, − 12.3] − 14.7 − 9.7 [− 15.2, − 4.2]
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Analysis by T2 characterization
Dichotomization was performed based on presence 
or absence of high T2 for at least one slice. Individuals 
with elevated T2 were older (15.0 y/o [12.9–19.7] vs. 11.3 
y/o [9.4–14.7], p = 0.005), weighed more (65  kg [43–83] 
vs. 45  kg [33–57], p = 0.027), and had lower LVEF (53% 

[48–57] vs. 59% [58–62], p = 0.005) compared to those 
with normal T2 (Table 4). Those individuals taking ster-
oids at the time of first CMR were less likely to have at 
least one slice with elevated T2 values (16% vs. 44%, 
p = 0.030). Native T1 times were lower in the mid and 
apex slices for the high-T2 group (999 ms [981–1069] vs. 
1062 ms [1040–1094], p = 0.012; 1000 ms [905–1030] vs. 
1063  ms [1026–1108], p = 0.009). ECV was elevated in 
the apex in individuals with elevated T2 (32% [31.0–35.0] 
vs. 29.0% [26.2–31.3], p = 0.032).

Longitudinal analysis
CMR parameters were compared between CMR-1 ver-
sus CMR-2 and CMR-3, respectively (Table  5). LVEF 
decreased over serial CMR. T2 times were significantly 
elevated on CMR-2 and CMR-3 compared to CMR-1 
at each slice, though the difference between basal T2 
for CMR 1 versus 3 did not reach statistical significance 
(p = 0.062). Native T1 and ECV times were not signifi-
cantly different on follow-up CMR.

Sub-analysis detailing individual slice progression was 
also performed with attention to slices demonstrating 
edema. There were 10 patients with 14 slices of edema 
(n = 10 at apex, n = 4 at mid) on initial CMR (Fig.  5A). 
Of these, only one slice had a normal classification on 
terminal CMR; however, this slice had a top normal T2 
time of 48.7 ms. The second CMR had 19 patients with 
23 slices of edema (n = 4 at base, n = 3 at mid, and n = 16 
at apex) (Fig. 5B). Comparison with the same slice loca-
tions on the first CMR revealed that all these slices repre-
sented new edema. Among these 23 slices, only two were 
classified as normal on the third CMR with one of these 
two patients having a top normal T1 time of 1050  ms. 
Amongst the ten patients with edema on CMR-1, six 
were not on steroids at initial CMR. Only one patient 
from this subgroup had steroids added in the interval 
between first and second CMR. This patient had edema 
on CMR-2 and had elevated T1 on CMR-3. One patient 
without prior steroid use and with fat infiltration on 
CMR-1 was started on steroids before CMR-2 and had 
progression to edema and then fibrosis on CMR-2 and 
CMR-3, respectively.

ROI analysis
Areas of LGE were localized on PSIR images and ROIs 
were placed in these areas on the native T1, T2, and ECV 
maps (basal n = 29; mid n = 30). LGE ROIs demonstrated 
higher native T1, T2, and ECV at base and mid, though 
the difference in mid T1 did not reach statistical signifi-
cance (Additional file 1: Table S2).

Fig. 4 Scatterplot of age and LVEF by category. A Those 
with elevated T2 values (edema, fat, fibrofatty) were older (p = 0.005) 
than those with normal T2 values (isolated elevated T1, fibrosis) 
as determined by Wilcoxon rank‑sum test. B Those with fibrofatty 
classification had significantly lower LVEF than all other groups. 
ANOVA was used to test for significance with Tukey post‑hoc testing 
completed to detect intergroup difference



Page 8 of 14Sunthankar et al. Journal of Cardiovascular Magnetic Resonance           (2023) 25:44 

Table 4 Characteristics by T2 values

Characteristics based on normal or high T2 values. Continuous variables presented as median [IQR]. Wilcoxon rank-sum test was used to detect a difference between 
groups for continuous variables. ECV extracellular volume fraction, LV left ventricle, RV right ventricle

Characteristic Normal T2 (n = 36) High T2 (n = 13) p-value

Age (years) 11.3 [9.4–14.7] 15.0 [12.9–19.7] 0.005

Weight (kg) 45 [33–57] 65 [43–83] 0.027

Height (cm) 142 [124–152] 160 [142–170] 0.016

LV ejection fraction (%) 59 [58–62] 53 [48–57] 0.005

LV Cardiac Index (L/min/m2) 3.6 [3.3–4.3] 3.1 [2.6–3.9] 0.035

Indexed LV diastolic volume (ml/m2) 60 [55–69] 73 [59–103] 0.068

Indexed LV systolic volume (ml/m2) 25 [22–30] 32 [25–50] 0.026

LV mass indexed (g/m2) 45 [41–48] 53 [45–65] 0.021

RV ejection fraction (%) 60 [55–64] 57 [55–60] 0.055

Indexed RV diastolic volume (ml/m2) 54 [49–66] 66 [62–76] 0.008

Indexed RV systolic volume (ml/m2) 23 [19–27] 29 [25–31] 0.002

Base native T1 (ms) 1073 [1050–1105] 1069 [1011–1088] 0.340

Mid native T1 (ms) 1062 [1040–1094] 999 [981–1069] 0.012

Apex native T1 (ms) 1063 [1026–1108] 1000 [905–1030] 0.009

ECV base (%) 27.5 [24.0–32.6] 32 [28.0–37.9] 0.060

ECV mid (%) 28.5 [24.4–31.5] 30 [27.5–36.0] 0.210

ECV apex (%) 29.0 [26.2–31.3] 32 [31.0–35.0] 0.032

Table 5 Characteristics compared over serial CMR

CMR 1 vs 2 CMR 1 vs 3

Left ventricular ejection fraction (%) 2.6 ± 0.5
 < 0.001

4.5 ± 0.8
 < 0.001

Indexed LV end diastolic volume (ml/m2) − 0.98 ± 1.4
0.484

− 3.1 ± 1.8
0.093

Indexed LV systolic volume (ml/m2) − 2.3 ± 0.9
0.014

− 4.3 ± 1.0
 < 0.001

LV mass indexed (g/m2) 3.3 ± 1.0
0.003

6.7 ± 1.3
 < 0.001

Right ventricular ejection fraction (%) 1.3 ± 0.9
0.163

1.7 ± 0.9
0.079

Basal strain (%) − 0.82 ± 0.5
0.095

− 0.82 ± 0.5
0.115

Mid strain (%) − 0.47 ± 0.5
0.371

− 0.81 ± 0.5
0.115

Apical strain (%) − 0.41 ± 0.6
0.463

− 0.25 ± 0.6
0.700

Global base native T1 (ms) 2 ± 9
0.780

10 ± 10
0.325

Global mid native T1 (ms) 20 ± 12
0.107

17 ± 12
0.164

Global apex native T1 (ms) 12 ± 15
0.412

46 ± 22
0.048

Global base T2 (ms) − 1.9 ± 0.5
 < 0.001

− 1.0 ± 0.5
0.062

Global mid T2 (ms) − 1.6 ± 0.4
 < 0.001

− 1.5 ± 0.7
0.029

Mean difference and standard error between serial CMR and tissue 
characterization parameter measurements. The first row in the cell is the mean 
difference with positive values indicating a higher value measured with CMR1 
than the compared study. The second row is the p-value. ECV extracellular 
volume fraction, LV left ventricle, RV right ventricle

Table 5 Characteristics compared over serial CMR

CMR 1 vs 2 CMR 1 vs 3

Global apex T2 (ms) − 1.7 ± 0.6
0.011

− 3.2 ± 1.4
0.025

Global base ECV (%) − 0.8 ± 0.6
0.198

− 0.7 ± 0.7
0.338

Global mid ECV (%) − 0.2 ± 0.8
0.728

0.0 ± 0.9
0.997

Global apex ECV (%) 0.2 ± 0.8
0.782

0.5 ± 1.0
0.613

Areas of focal T2 elevation were identified on T2 maps 
and ROIs were placed in these areas on T2, native T1, and 
ECV maps. T2 ROIs were identified in 16 patients (8 with 
T2 elevation at basal slice and 13 at mid slice). These ROIs 
demonstrated elevated ECV and T1, though basal T1 did 
not reach statistical significance (Additional file 1: Table S3). 
These ROIs were classified as edema in 94% (n = 15/16) at 
the initial CMR. Follow up CMR evaluation in the same 
location demonstrated abnormal parametric mapping in all 
cases, with persistence of edema or development of fibrosis 
being the most common findings (Figs. 6, 7).
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Discussion
This is the first study of which we are aware to use 
advanced parametric mapping techniques, including 
newer T2 mapping sequences, to classify DMD sub-
jects and perform a “virtual myocardial biopsy” to bet-
ter understand characteristics of myocardial disease and 
progression. The primary findings of our study are: (1) 
fibrosis is the most common DMD myocardial compo-
sition change, and normal myocardial tissue charac-
terization is rare in DMD; (2) elevated T2 times occur 
in older patients with decreased LVEF; and (3) most 
areas of LGE are comprised predominately of fibrosis. 
The majority of patients with elevated T2 at the slice 
level had elevated T1 and ECV in the same location. 

Taken together, these data suggest that edema is a com-
mon pathway in the development of myocardial abnor-
malities and that fatty infiltration, while present, likely 
occurs in older patients with more significant myocar-
dial disease (Fig. 8).

Studies have shown increased T2 relaxation time in 
thigh muscles of DMD patients in comparison to con-
trols [21]. With the belief that skeletal muscle pathogen-
esis parallels that of the cardiac muscle, we suspected 
T2-mapping to play an important role in understand-
ing progression of myocardial disease. Previous studies 
utilizing a black blood dual spin method for T2 acqui-
sition demonstrated higher T2 times in older patients 
with decreased LVEF corroborating our findings [22]. 

Fig. 5 Progression of slice edema on serial CMR. A Subjects with edema on CMR‑1 for any slice (base, mid, or apex, represented as elevated 
T2 and normal or high T1 for the entire slice) are demonstrated with their categorization designation on terminal CMR available for review. B 
Includes subjects with slice edema detected on CMR‑2 and without edema on CMR‑1, as well as their cardiovascular progression as illustrated 
by their categorization on CMR‑3. There is no overlap in slices included between (A) and (B). Those without follow‑up CMR are designated as “no 
subsequent data”
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While findings are similar, our study utilizes a more 
contemporary T2 mapping sequence to analyze the 
myocardium. Interestingly, there was no elevation in 
T2 at the basal slice in any patient and the apical slice 
was the most commonly affected slice. LGE data sug-
gest that the basal and mid slices are the first to develop 
LGE with a progression from base to apex. We hypoth-
esize that T2 is more commonly elevated at the apex as 
these regions are more commonly undergoing the cycle 
of inflammation/edema in older boys undergoing CMR, 
while the basal and mid slices have had a significant 
portion of myocardium already replaced with fibrosis. 
In support of this, there remain ROIs of elevated T2 at 
the base and mid slices, but these focal areas of edema 
are unable to increase the average T2 into the abnormal 
range. Longitudinal follow-up for slices with edema, in 
this cohort, demonstrated that once edema is present, 

return to normal myocardial composition is rare. This is 
clinically relevant as the presence of myocardial inflam-
mation leading to longitudinal decreased ventricular 
function has been previously described in the DMD 
population; we hypothesize that the myocarditis/dys-
trophinitis reported in these publications represents an 
extreme myocardial inflammatory response due in part 
to natural progression of DMD myocardial disease [23, 
24]. T2 ROIs showed absence of normal regions fol-
lowing the presence of edema on initial CMR. Persis-
tence of edema or progression to fibrosis were the most 
common subsequent findings with few demonstrat-
ing fibrofatty infiltration. These findings suggest that 
once edema is present, there is cyclical occurrence of 
edema and fibrosis until late fatty deposition is detected 
(Fig. 8). Although diffuse fibrosis can improve, replace-
ment fibrosis is unlikely to resolve. Unfortunately, these 

Fig. 6 Progression of edema for base T2 ROI. Eight individuals had edema detected on CMR‑1 in the base T2 ROI. Progression of these eight 
patients on CMR‑2 and 3 is demonstrated. Those without follow‑up CMR are designated as “no subsequent data”



Page 11 of 14Sunthankar et al. Journal of Cardiovascular Magnetic Resonance           (2023) 25:44  

imaging techniques are unable to distinguish between 
edema alone and edema with underlying fibrosis. Late 
follow-up CMR and a larger sample size of fat or fibro-
fatty deposition would be beneficial in corroborat-
ing this supposition. Finally, we hypothesize that fatty 
replacement is more likely to occur first in basal slices, 
as the ROIs of elevated T2 at the base had no difference 
in native T1 (and in fact a trend towards lower T1) sug-
gestive of a mix of both edema and fat.

Global T1 is lower in patients with elevated T2; how-
ever, in ROIs of T2 elevation at the mid slice, the T1 
tended to be elevated. We hypothesize that fatty infil-
tration is a more diffuse process, while edema is more 
focal. We also suspect, based on the pathogenesis of 
disease, that edema is a transient finding during early 
myocardial inflammation and/or ischemia and thus 
more difficult to capture prior to fibrotic changes. 

Emerging pre-clinical data suggest that edema may be 
part of earlier pathogenesis, while fatty infiltration is a 
late finding [25]. With only three patients classified as 
having fatty or fibrofatty infiltrate, larger cohorts and 
more longitudinal data will be necessary to substantiate 
this theory.

Elevated native T1 and ECV have been demonstrated in 
patients with DMD previously [13, 26, 27]. In this cohort, 
T1 times were most commonly increased in the basal and 
mid slices with highest values in the inferolateral seg-
ment of each of these slices. This segment has been dem-
onstrated to be affected in non-ischemic myocarditis as 
well as in our previous studies of DMD [13, 28]. While 
the reason early myocardial abnormalities localize to this 
segment is unclear, focusing on this region may allow for 
earlier detection of disease.

Fig. 7 Progression of Edema for Mid T2 ROI. Eleven individuals had edema detected on CMR‑1 in the mid T2 ROI. Progression of these 11 patients 
on CMR‑2 and 3 is demonstrated. Those without follow‑up CMR are designated as “no subsequent data”
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Although 98% of this cohort demonstrated elevated 
T1 in at least one segment, it is likely that many of these 
abnormalities are spurious. Indeed, previous studies from 
our institution have shown that even healthy controls may 
have segmental T1 abnormalities [29]. It is possible that 
this could represent transient inflammation or edema, 
even in healthy controls. There have been reports of myo-
carditis superimposed on DMD cardiomyopathy [30, 31]. 
This may be more pertinent in DMD as they do not have 
normal cardiomyocyte reserve that otherwise normal 
patients have. While segmental abnormalities could be due 
to chance, 82% of patients demonstrating at least one slice 
with elevated T1 is more likely due to early myocardial dis-
ease. Although the prognostic significance of elevated T1 
is unclear, the elevation of T1 prior to development of LGE 
has been described in prior cohorts [13, 20, 26].

Strain data in this manuscript suggest a similar base 
to apex gradient as seen with LGE. While strain values 
did not correlate with parametric mapping values in this 
cohort, there were abnormal strain values at all three 
slices. Strain values remained abnormal over serial CMR; 
however, there was no significant change in strain values 
over serial CMR in this cohort. While the focus of this 
study was on parametric mapping values to categorize 
myocardial changes, it is clear that longitudinal strain 
values should be followed with patients demonstrating 
abnormal strain with baseline CMR. The authors believe 
utilizing strain to perform 3D myocardial mapping could 
allow for better understanding of segmental remodeling 
and is an area of future exploration.

Limitations
Parametric mapping changes are not seen uniformly 
throughout the myocardium; therefore, assignment 
to a particular characterization group may only par-
tially describe the pathology present. The truth is 
likely that there is patchy progression and that multi-
ple different pathological changes are present in some 
patients. Unfortunately, the parametric mapping meth-
ods reported here are unable to distinguish these more 
complex tissue patterns, which would be apparent in an 
actual myocardial biopsy. The authors acknowledge that 
current parametric mapping techniques cannot fully 
replace information obtained from an actual biopsy; 
however, we believe that cardiac MRI may serve as a 
useful non-invasive method to help understand cardio-
myopathy progression in DMD that has, up to this point, 
been difficult to assess due to limited tissue samples. In 
addition, these methods are ideal for tracking longitudi-
nal myocardial changes.

Due to technical limitations, we were unable to com-
plete fat/water separation imaging to provide additional 
evidence to distinguish between edema and fat infiltra-
tion, but we feel that the combination of T1, T2, and 
ECV provides an adequate, quantitative method for 
tissue characterization. Many DMD patients become 
uncomfortable in the scanner due to contractures, sco-
liosis, or claustrophobia. Those that were unable to toler-
ate CMR were not enrolled and this could lead to some 
bias in the study, though these factors are usually unre-
lated to cardiac disease. In addition, given the concern 

Fig. 8 Postulated myocardial infiltrative changes. Edema and fibrosis were the most common myocardial changes detected in this study. 
We postulate that there is a cyclical interchange between edema and fibrosis with fat and fibrofatty replacement as the terminal myocardial 
composition
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for discomfort, our DMD protocols are designed to limit 
required scan time. This comes at the expense of addi-
tional sequences. Therefore, long axis imaging (2-, 3-, and 
4-chamber) and more comprehensive short axis coverage 
were not performed in an effort to limit total scan time 
for our patients. More comprehensive coverage could not 
be performed without removing other sequences of inter-
est (tagged images, comprehensive LGE, etc.). There-
fore, there were areas of LGE without a map. However, 
given that LGE is usually present in contiguous slices, the 
“missed” areas were felt to be of minimal consequence.

Of note, partial volume averaging is a possible con-
founder for parametric mapping, particularly at the apical 
slices. We were careful to not contour slices felt to be “too 
apical” and to contour only the mid-myocardium. Blood 
pool in the ventricular cavity has high native T1 signal; 
therefore, if partial volume averaging were occurring, we 
would have expected artificially elevated T1 times at the 
level of the apex. The T1 values at the apex were lower in 
this study, suggesting that partial volume averaging was 
successfully avoided at the apical slices. Due to the inher-
ent challenges with mapping of the apical slice, there were 
five apical slices that were unable to be analyzed for native 
T1 and six apical slices that were unable to be analyzed for 
ECV. All apical slices were able to be analyzed for T2.

Conclusion
While LGE is unable to distinguish between fibrosis, fat, 
and edema, parametric mapping, including T2-map-
ping, may allow for the differentiation of these tissue 
characteristics. In this cohort of DMD subjects, fibrosis 
was the most commonly observed myocardial change. 
Patients with elevated T2 were older and had decreased 
LVEF, and the areas of LGE predominately represented 
fibrosis. Longitudinal data suggest that development of 
edema portends persistence of myocardial pathology 
with subsequent normalization of tissue parameters a 
rare finding. Measurement of T1, ECV, and T2 may pro-
vide a virtual biopsy to define the pathological composi-
tion of DMD cardiomyopathy with the eventual goal to 
develop targeted therapies to mitigate these changes.
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