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Abstract 

Background  Quantification of three-dimensional (3D) cardiac anatomy is important for the evaluation of cardio-
vascular diseases. Changes in anatomy are indicative of remodeling processes as the heart tissue adapts to disease. 
Although robust segmentation methods exist for computed tomography angiography (CTA), few methods exist 
for whole-heart cardiovascular magnetic resonance angiograms (CMRA) which are more challenging due to variable 
contrast, lower signal to noise ratio and a limited amount of labeled data.

Methods  Two state-of-the-art unsupervised generative deep learning domain adaptation architectures, generative 
adversarial networks and variational auto-encoders, were applied to 3D whole heart segmentation of both con-
ventional (n = 20) and high-resolution (n = 45) CMRA (target) images, given segmented CTA (source) images 
for training. An additional supervised loss function was implemented to improve performance given 10%, 20% 
and 30% segmented CMRA cases. A fully supervised nn-UNet trained on the given CMRA segmentations was used 
as the benchmark.

Results  The addition of a small number of segmented CMRA training cases substantially improved performance 
in both generative architectures in both standard and high-resolution datasets. Compared with the nn-UNet bench-
mark, the generative methods showed substantially better performance in the case of limited labelled cases. On 
the standard CMRA dataset, an average 12% (adversarial method) and 10% (variational method) improvement in Dice 
score was obtained.

Conclusions  Unsupervised domain-adaptation methods for CMRA segmentation can be boosted by the addition 
of a small number of supervised target training cases. When only few labelled cases are available, semi-supervised 
generative modelling is superior to supervised methods.

Keywords  Deep learning, Whole-heart segmentation, Domain adaptation, Generative adversarial networks, 
Variational auto-encoders
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Introduction
Accurate quantification of whole heart anatomy is 
required for patient diagnosis and prognosis as well as 
the evaluation of treatment. Non-invasive medical imag-
ing techniques such as computed tomography angi-
ography (CTA) or cardiovascular magnetic resonance 
angiography (CMRA) can be used to quantify 3D heart 
anatomy [16, 26]. Deep Learning techniques can give 
highly accurate segmentations given sufficient ground 
truth labels [2, 6, 25] even in the presence of low contrast 
and high noise images [12, 15]. Despite rapid advance-
ments, a major unsolved problem is the poor adaptability 
of these methods to different imaging modalities, scan-
ners and acquisition protocols, and the related need for 
large amounts of labelled data in each domain. Deep 
learning models trained on one domain do not general-
ize well to a different target domain [1] with zero or very 
few labelled cases. The difference in distribution between 
a large, labelled source domain and an unlabeled target 
domain is called “domain gap" [10, 22].

Here, we investigate how to bridge the domain gap 
between CTA images used as source and CMRA images 
as target. Given sufficient manual domain-specific 
ground truth labelled data, the UNet architecture had 
provided state-of-the-art performance in whole heart 
segmentation applications [25]. In particular, the nn-
UNet package provides a self-configuring solution with 
a range of data augmentation and ensembling tools 
[11]. However, these models typically do not general-
ize to other domains. Unsupervised domain adaptation 
(UDA) methods seek to transfer segmentation ability 
acquired in one domain to the other without the need 
for ground truth labels in the target domain. Most UDA 
methods use generative modelling, in which the domain 
gap is reduced by generating target domain images from 
source domain images. Two powerful UDA generative 
modelling methods are variational autoencoders (VAEs) 
and generative adversarial networks (GANs). VAEs use 
probabilistic encoder and decoder networks, optimized 
using maximum likelihood. Conversely, GANs use gen-
erator and discriminator networks which are optimized 
in an adversarial manner. It is currently unclear which 
architecture is best for cardiac CMRA applications. Two 
methods which have provided state-of-the-art perfor-
mance in whole heart segmentation UDA applications 
are the synergistic image and feature alignment (SIFA) 
GAN architecture [7, 8] and the variational approxima-
tion for domain adaptation (VARDA) VAE architecture 
[20] which have both shown greater success in CMRA 
(source) to CTA (target) domain transfer than vice-versa.

In this paper we improve our preliminary work 
[14] investigating semi-supervised performance of 
these two methods, by removing the requirement for 

pre-processing registration between CTA and CMRA 
datasets, incorporating a fivefold cross validation for a 
full statistical analysis, testing a range of supervision lev-
els from 0 to 30%, testing performance on two different 
CMRA protocols, and comparing with the supervised 
nn-UNet method. This study is designed to be applied to 
multi-domain data with a variable number of supervised 
cases, and to provide a guideline for choosing the best 
approach for this challenging problem.

Materials and methods
Data acquisition
Figure  1 is a summary of the methods we investigate, 
where inputs and outputs are color-coded to show what 
is required and what is offered by each method. The first 
dataset comprised standard CMRA images from the 
multi-modality whole heart segmentation (MMWHS) 
cardiac segmentation challenge 2017 [13, 24, 25] which is 
publicly available. This includes 20 unpaired CMRAs and 
CTAs with ground truth labels. The cardiac CT data were 
acquired using routine CT angiography, covering the 
whole heart from the upper abdominal to the aortic arch. 
Slices are acquired in the axial view. The in-plane reso-
lution was approx 0.78 × 0.78  mm and the average slice 
thickness was 1.60 mm. The CMRA data were acquired 
using 3D balanced steady state free precession (b-SSFP) 
sequences, without contrast, with approx. 2 mm acquisi-
tion resolution in each direction and reconstructed (res-
ampled) into approx 1  mm [25]. Respiratory gating was 
performed using a navigator placed on the diaphragm 
and cardiac gating was performed retrospectively from 
the ECG.

The second dataset [4] included 51 paired cases of 
CTA and CMRA, with patients and healthy subjects. The 
acquisition of the 3D whole-heart isotropic sub-millime-
ter resolution CMRAs was performed using free-breath-
ing bSSFP with image navigator (iNAV) and non-rigid 
motion compensated reconstruction, described in [4]. 
The CMRA images were reconstructed to 0.6mm

3 iso-
tropic resolution, while the CTAs had 0.5  mm slice 
thickness, and in-plane resolution of 0.2 ∼ 0.4 mm × 0.2 
∼ 0.4 mm. To obtain the labels for the CTA dataset, we 
used the method described in [21]. Ground truth seg-
mentations for the CMRA cases were obtained by regis-
tering the CT with the MR using non-rigid registration 
[17] and manually correcting the resulting segmentation 
errors using 3D Slicer. Note that the registration was 
only used to generate ground truth CMRA label maps. 
Unlike our previous work [14], the current methods did 
not require paired CTA and CMRA datasets and did not 
perform registration as a pre-processing step. We will 
refer to this second dataset as High Resolution CMRA 
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(HRMRA), to distinguish it from the MMWHS dataset, 
where the CMRA images have a lower resolution.

Labels of interest included all the following: ascend-
ing aorta (AA), left atrium blood cavity (LA), left ventri-
cle blood cavity (LV), myocardium of the left ventricle 
(MYO), right ventricle (RV) and right atrium (RA).

Network architectures and optimization
The SIFA architecture [7, 8] used a generator to per-
form a source-to-target image transformation, and a 
shared encoder which takes as inputs the real target xt 
or the generated target x̃t images, and it is connected to 
a decoder and a pixel-wise classifier. The former recon-
structs both images into a generated source (similar to 
the CycleGAN architecture [23]), while the latter per-
forms the image segmentation task. The model weights 
are optimised by a combination of adversarial losses, 
reconstruction losses and a source segmentation loss. 
More details are given in the Additional file 1.

The VARDA architecture [20] used two VAEs for 
encoding source and target domains. The total loss 
is a combination of two reconstruction terms, the 

Kullback–Leibler (KL) Divergence term, and a discrep-
ancy loss which is introduced as an explicit metric to 
directly reduce differences between the latent variables 
from the two domains. The classifier takes features 
from the encoder and predicts a segmentation from 
both the source and target images. More details are 
given in the Additional file 1.

The input for both of these techniques was axial 2D 
slices from the 3D volumes in both datasets. Figure  2 
shows the basic building blocks for the two techniques. 
Part A is a schematic illustration of a GAN applied to 
our scope. A generator model outputs an image whose 
quality is being optimized through the feedback given 
by a discriminator model. Its role is to differentiate 
between a real (true MRA) and fake image (CT-gener-
ated MRA). Part B represents a VAE, where the input 
is first fed into an encoder and then reconstructed 
through a decoder. The decoder samples from a latent 
vector drawn from a distribution with mean μ and 
standard deviation σ (Fig. 2). The generation of images 
is only possible through the regularization of the latent 
space using element-wise multiplication of the standard 

Fig. 1  Summary of options to obtain an automatic CMRA segmentation. The border in each image is orange for inputs to the deep learning 
networks, and green for outputs. Dashed borders indicate that the outputs can be generated with or without corresponding ground truth label 
maps. Option A is a fully supervised approach (UNet). It only relies on a segmentation module, which takes as input MR images and corresponding 
label maps to produce as output the segmentations MR-seg. Option B and C are generative modelling approaches; B is a GAN approach which 
uses the Domain Transfer module plus a Segmentation module. CT and MR images are used as inputs to generate gMR and gCT respectively. gMR 
and MR are fed into the segmentation module which learns how to segment images from this domain, whether they are real or generated, utilizing 
the CT label maps. If available, MR label maps can also be used as a supervised segmentation loss, in any quantity; C is a VAE approach which 
uses the domain decoupling module to generate gCT and gMR images with no domain-specific features. As before, the Segmentation module 
can be trained with or without ground truth MR-seg, but it requires CT label maps. CMRA: cardiovascular magnetic resonance angiography; GAN: 
generative adversarial network; VAE: variational autoencoder
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deviation σ with a random variable sampled from a 
Gaussian distribution N.

As the original methods described in [8, 20] are fully 
unsupervised, we modified both approaches to accom-
modate any number of supervised cases [14]. To do this, 
we introduced the following modifications to the original 
networks:

•	 in the GAN-based approach, where usually the 
segmentation loss relies on the source label map 
(since the transformation between source and tar-
get is learnt), we added true target labels. Hence, 
the segmentation loss was alternatively obtained by 
source-to-target label maps or real target label maps, 
depending on the input case;

•	 in the VAE-based approach, we used a similar tech-
nique. Here, the segmentation loss is originally just 
for the source image, we added one for the target, 
and we conditioned the reconstruction of the target 
image not solely on the predicted label map, but on 
the ground truth label map, when available.

The SIFA network was re-implemented in PyTorch, 
while VARDA was adapted from the PyTorch repository.

For comparison with a fully supervised network, we 
first ran the nnUNet package [11] on our tasks to obtain 

an optimization of processing steps and hyperparame-
ters, then we used these to train our own implementation 
of a 2D Dynamic UNet, implemented with the medical 
open network for artificial intelligence (MONAI) frame-
work [9]. To emulate the nnUNet training protocol, we 
added affine, Gaussian noise, Gaussian blur, scale inten-
sity and mirror augmentation techniques provided by 
MONAI [9].

Prior to training, we resized and cropped each multi-
modal image to focus only on the heart region, to obtain 
256 × 256 image size for the GAN-based approach and 
192 × 192 image size for the VAE-based approach. For 
the GAN-based approach we rescaled each axial slice 
to the range [− 1,1] as this substantially improves train-
ing of GANs since the generator activation layer is gen-
erally a tanh function which produces images in the 
range [− 1, 1]. For the VAE-based, we rescaled the data 
to have a mean of 0 and a standard deviation of 1 (stand-
ardization). Each slice was then fed to the networks in an 
unpaired fashion, hence there was no correspondence in 
anatomies between source and target domains.

Evaluation setup
For each generative modelling approach (GAN-based 
and VAE-based), we performed 4 experiments: no super-
vision, 10%, 20%, and 30% supervision. In the MMWHS 

Fig. 2  Basic diagrams of DL generative modelling architectures. A GAN structure where the Generator is decomposed into Encoder + Decoder. The 
Generator generates MR images from CT images, and the Discriminator discerns between real MR and CT-generated ones. B VAE structure which 
feeds the original input into a probabilistic encoder; the encoder learns vectors μ and σ from the data and the reparameterization trick is used 
to obtain a parametrised latent space z (note ⊙ is used for element-wise multiplication) from which images can be reconstructed. GAN: generative 
adversarial network; VAE: variational autoencoder
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dataset this corresponded to 2, 4, 6 supervised target 
cases, while for the HRMRA we used 5, 10 and 15 cases 
respectively. Since UNet is a fully supervised method, we 
only run 3 experiments with 10%, 20%, and 30% supervi-
sion. Every label map obtained was compared to manual 
ground truth using 3D Dice and average surface distance 
(ASD) metrics. We used a fivefold cross validation for 
every experiment, with data splits performed by patient 
to avoid potential data leakage. Supervised cases for each 
fold were randomly picked excluding the validation cases. 
We compared all experiments to highlight the differ-
ence in levels of supervision or in approach (GAN, VAE, 
UNet) through the Wilcoxon paired test and correspond-
ing p-values. For visualization, we used the Python stats 
toolkit from [5].

Results
All experiments were evaluated through 3D Dice and 
ASD (mm) metrics. The results were aggregated over all 
test folds (Additional file 1: Tables S1, S2).

We first provide an overview of the experiments in 
Figs.  3, 4. These show the effect of adding supervised 
target cases in the HRMRA and MMWHS datasets 
respectively. As expected, the performance of GAN, 

VAE and UNet were higher on the HRMRA dataset 
than on the MMWHS dataset. This is likely due to the 
availability of more cases for training, and the higher 
quality of the HRMRA images. ASD results showed 
similar patterns to Dice (Additional file 1: Tables S1 and 
S2). Comparing different levels of supervision per each 
label, the difference between no supervision and 30% 
supervision was almost always significant. This was true 
for all experiments, except for some labels in the UNet 
method, and for the RA/AO labels in the GAN-based 
results for the HRMRA dataset. A significant improve-
ment was often found when going from no supervision 
to 10% supervision, especially in the HRMRA dataset, 
while it becomes rarer between 10% supervision and 
20% supervision, and even more between 20 and 30% 
experiments.

Figure S1, S2 in Additional file 1 compare performance 
between methods. Both GAN and VAE significantly out-
performed Unet for most labels and supervision levels. 
In the MMWHS dataset, GAN and VAE methods were 
not significantly different for LV, LVM and RV labels at 
0%, 10%, 20% and 30% supervised target cases. However, 
GAN outperformed VAE for LA at 0% and 20%, RA at 0% 
and 10%, AO at 0%, 20% and 30% supervision ( p < 0.05 ). 

Fig. 3  Results grouped by label. In each boxplot, statistical analysis is conducted between experiments with varying levels of supervision, 
as per legend on the top left corner. Dashed brackets for p <  = 5.00e−02, square brackets for p <  = 1.00e−03. HRMRA Dataset. HRMRA, high 
resolution magnetic resonance angiography
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In the HRMRA dataset, GAN outperformed VAE for 
most labels at every level of supervision.

Figures 5, 6, 7, 8 show examples of the outputs from the 
GAN-based method and the VAE-based method on each 
dataset. The first two rows show the images generated by 
each experiment for CTA or CMRA inputs, the last row 
shows the ground truth MR segmentation on the left and 
the predicted ones on the right. The difference in the two 
generative approaches can be observed. The GAN-based 
network tries to generate an CMRA from CTA, and vice 
versa, while the VAE generates less domain-dependent 
images due to the alignment of the joint latent space. 
From a comparison between Figs. 5 and 6, and between 
Figs. 7 and 8, it is also clearly visible that the MMWHS 
dataset represents a bigger challenge with greater impact 
of the supervision on the quality of the predicted labels. 
The difference is more subtle for the HRMRA dataset 
(Figs. 6 and 8), where less improvement in predicted seg-
mentation quality is seen with increasing supervision, 
although still present (cf. Fig.  3 and Additional file  1: 
Table S2).

To validate the consistency across slices, in Fig.  9 we 
show the 3D label map obtained by each method. Again, 

this confirms that the HRMRA dataset is easier to seg-
ment, and that, even with a 30% supervision, a GAN-
based approach is preferable to the fully supervised one. 
The difference between 1B and 1D for the MMWHS 
dataset appears to be visually significant, with very scarce 
labels and poor boundaries drawn by a UNet and a much 
better result in case D.

Finally, Table  1 summarizes the average signed differ-
ences and root-mean-squared error (RMSE) between 
HRMRA volumes obtained by the ground truth label 
maps and the ones calculated from outputs of the trained 
models. This shows that the calculated volumes are sub-
stantially closer to the ground truth values in semi-super-
vised experiments, rather than in unsupervised ones. The 
corresponding table for MMWHS data is found in Addi-
tional file 1: Table S3.

Discussion
Our results show that adding a small number of super-
vised cases to a generative modelling domain adaptation 
method can significantly boost segmentation quality. In 
our experiments, using two CMRA datasets with differ-
ent resolution quality, as little as 10% supervision was 

Fig. 4  Results grouped by label. In each boxplot, statistical analysis is conducted between experiments with varying levels of supervision, 
as per legend on the top left corner. Dashed brackets for p <  = 5.00e−02, square brackets for p <  = 1.00e−03. MMWHS Dataset. MMWHS, 
multi-modality whole heart segmentation
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enough for a significant change from a completely unsu-
pervised approach (Figs. 3, 4). In a situation where very 
little ground truth is available in one domain, we show 

that supervised techniques, although optimally trained, 
are outperformed by generative domain adaptation 
methods. In the MMWHS dataset, we achieved Dice 

Fig. 5  GAN-based method results on Dataset 1 (MMWHS). The first column shows the original input images, the following columns show outputs 
of the network for progressively higher level of supervision. Row 1–2 show generated images, while row 3 shows segmentation output. The 
GAN-based method transforms the source modality (CT) into target (MR) and vice versa. Legend for segmentation labels as follows: LV = turquoise, 
LVM = orange, RV = blue, LA = green, RA = yellow, AO = grey. GAN, generative adversarial network

Fig. 6  GAN-based method results on Dataset 2 (HRMRA). Explanation and legend for segmentation labels as above
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scores of 0.86 (LV), 0.69 (LVM), 0.74 (RV), 0.73 (LA), 
0.79 (RA), 0.74 (AO). This is on average a 12% increase 
on the original GAN-based approach [8], which reported 

0.79 (LV), 0.47 (LVM), 0.62 (LA), 0.65 (AO), and a 10% 
increase on the results from [20]: 0.74 (LV), 0.47 (LVM), 
0.73 (RV), 0.63 (LA), 0.71 (RA) in the original VAE 

Fig. 7  VAE-based method results on Dataset 1 (MMWHS). The first column shows the original input images, the following columns show outputs 
of the network for progressively higher level of supervision. Rows 1–2 show reconstructed images, while row 3 shows segmentation output. 
The VAE-based method tries to reconstruct a source (CT) and a target (MR) image which are modality-invariant. Legend for segmentation labels 
as follows: LV = turquoise, LVM = orange, RV = blue, LA = green, RA = yellow, AO = grey

Fig. 8  VAE-based method results on Dataset 2 (HRMRA). Explanation and legend for segmentation labels as above
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approach. Moreover, in the HRMRA dataset, providing 
higher resolution in the CMRA domain, we obtained 
an average Dice of 0.86 across all labels. This compares 
well with the results of the 2017 Multi-Modality Whole 
Heart Segmentation (MMWHS) challenge [25], which 
presented more than 10 algorithms for supervised CTA 
and CMRA segmentation, with the highest results 
reporting a maximum 3D Dice of 0.908 ± 0.086 for CT 
and 0.874 ± 0.039 for MR. Compared with interobserver 
errors from a multi-core-lab study [19], the mean and 
standard deviation of volume differences between core 
labs was typically 20 ± 10 mL respectively, compared with 

− 1.8 ± 8.1  mL + for LV and 2.2 ± 10.3  ml for RV volume 
(Table  1, 30% supervised GAN). Scan-rescan coefficient 
of variation for LV mass was 5%, or 7.5 g, in [3] compared 
with 9.5 g for the 30% supervised GAN (Table 1). There-
fore, although our results need to be improved to achieve 
super-human performance, current results are clinically 
applicable.

In our previous work [14], the training of the genera-
tive modelling techniques was limited by a manual reg-
istration step, whereas here we focus on boosting the 
results by relying solely on the original images and the 
architecture. Important factors that improved these 

Fig. 9  Comparison between ground truth 3D label maps and the results obtained using different approaches under a 30% supervision (maximum 
available). One random case was extracted from fold 1 in both dataset 1 and 2. Legend for segmentation labels as follows: LV = turquoise, 
LVM = orange, RV = blue, LA = green, RA = yellow, AO = grey

Table 1  Table containing metrics for volume measurements (mL) obtained from label maps

The results are reported using avg ± std signed differences (RMSE) between ground truth volumes (top row) and predicted volumes. The second column (SUP) refers to 
the supervision level adopted in the experiment. The best result per each method is highlighted in bold, and the best result overall is bolditalics. HRMRA Dataset

Method SUP LV LVM RV LA RA AO

GT 99.64 ± 33.14 115.51 ± 26.63 117.32 ± 31.92 57.45 ± 20.31 70.18 ± 21.97 35.90 ± 9.23

VAE 0% 35.6 ± 17.7 (40.5) 37.9 ± 28.6 (47.3) 63.3 ± 25.9 (68.2) 32.2 ± 15.5 (35.7) 26.9 ± 12.4 (29.6) 13.7 ± 9.1 (16.4)

10% 12.6 ± 10.6 (16.4) 31.4 ± 16.1 (35.2) 39.7 ± 19.9 (44.3) 20.2 ± 16.4 (25.9) 19.4 ± 10.7 (22.1) 8.6 ± 9.8 (13.0)

20% 6.3 ± 9.2 (11.1) 28.2 ± 13.1 (31.1) 33.8 ± 20.0 (39.2) 13.9 ± 14.5 (20.0) 18.3 ± 9.5 (20.6) 9.3 ± 5.4 (10.7)

30% 3.4 ± 8.6 (9.2) 26.5 ± 11.5 (28.8) 24.5 ± 15.7 (29.0) 12.2 ± 12.9 (17.7) 16.3 ± 11.3 (19.8) 7.5 ± 5.4 (9.2)

GAN 0% 12.7 ± 12.4 (17.6) 3.9 ± 14.1 (14.5) 20.8 ± 13.1 (24.5) 2.4 ± 16.3 (16.2) − 0.8 ± 9.2 (9.2) 1.8 ± 4.5 (4.8)

10% 2.3 ± 7.2 (7.5) 2.1 ± 8.8 (8.9) 7.4 ± 11.2 (13.4) 4.7 ± 13.7 (14.3) 1.2 ± 10.4 (10.3) 1.0 ± 5.2 (5.2)

20% 0.0 ± 7.6 (7.5) − 1.4 ± 12.4 (12.3) 3.6 ± 11.2 (11.6) 2.0 ± 13.8 (13.8) − 0.4 ± 9.7 (9.6) 0.6 ± 5.4 (5.4)

30% − 1.8 ± 8.1 (8.3) 0.6 ± 9.5 (9.4) 2.2 ± 10.3 (10.5) 1.9 ± 10.9 (11.0) 0.6 ± 9.6 (9.6) 0.0 ± 5.4 (5.4)

UNet 10% 47.2 ± 75.1 (87.9) − 5.1 ± 27.4 (27.6) − 9.8 ± 25.6 (27.1) 7.6 ± 42.5 (42.7) 7.4 ± 32.9 (33.3) − 5.9 ± 9.3 (10.9)

20% 97.2 ± 73.2 (121.2) 0.3 ± 14.9 (14.7) − 9.4 ± 18.1 (20.3) − 1.7 ± 19.7 (19.5) 0.4 ± 17.3 (17.1) 1.1 ± 11.1 (11.1)

30% 15.6 ± 46.6 (48.7) 6.7 ± 19.9 (20.8) − 2.0 ± 18.5 (18.4) 3.1 ± 27.2 (27.0) − 2.6 ± 15.5 (15.5) − 0.3 ± 6.4 (6.4)
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models included: scaling of input images to the GAN 
architectures in a specific range and training on ran-
dom slices rather than consecutive ones extracted from 
a volume, cropping images around the heart for the VAE 
approach. The GAN approach, once stably trained, gave 
generally better results, and can generate fake images 
from both source and target domains (Figs.  5,  6). This 
can be very useful in applications where a certain anat-
omy is required in a specific modality, or, in the future, 
for a fusion between imaging modalities [18]. On the 
other hand, the VAE approach was easier to train and 
twice as fast (~ 12 h for single fold training vs ~ 24 h for 
GAN-based method) and can still output high-quality 
segmentations. Although we solely optimise and validate 
our methods based on segmentation quality, we believe 
the difference in reconstruction quality to be a significant 
factor. VAE based methods tend to produce smoother 
images than GANs, since they are maximum likelihood 
estimations rather than a Nash equilibrium. Moreover, 
VARDA’s architecture specifically aims at learning fea-
tures that are domain-invariant during the training stage, 
hence the reconstructed images are intended to lose most 
of the features which would make them look realistic (cf. 
Figure 6 in [20]).

In addition to Fig. 9, in Additional files 2 and 3 we pro-
vide videos which show the 3D consistency of the label 
maps obtained on this dataset by both generative tech-
niques. Indeed, the results achieved and the quality of 
the HRMRA data suggest that one could move further 
by performing an accurate segmentation of the smaller 
structures (arteries, veins) and thus, generating another 
interesting application directed at patients in need of car-
diac catheterisation [26]. Both the GAN- and VAE- based 
approach could also be modified to directly work on 3D 
inputs and tackle 4D challenges such as the segmenta-
tion of 3D cardiac CINE MRI, investigating motion and 
geometry of the heart.

Limitations
Although in this paper we overcome the previous 
requirement of multi-modality registration [14], the 
experiments presented here heavily rely on pre-pro-
cessing steps which include cropping and centering of 
the input images. These are challenging to identify and 
widely vary depending on the technique used. They also 
appear to significantly affect segmentation performance. 
Indeed, the cropping step seems to be an essential fac-
tor for both networks, and particularly in the VAE-based 
approach, which requires a very close field of view. In our 
experiments, this was obtained by identifying the cen-
troid of the heart using the ground-truth labels but in 
clinical practice the performance would highly benefit 
from a pre-processing bounding box location step. The 

generalizability of deep learning methods for segmenta-
tion would benefit from increased dataset size and vari-
ability in terms of MR scanner, sequence and presence 
of pathologies. Lastly, we limited evaluation to 6 labels, 
however, extension to pulmonary veins and arteries is 
possible in future work since the labels are available in 
the ground truth dataset.

Conclusion
In this study, we compared semi-supervised methods 
based on generative modelling with a state-of-the-art 
fully supervised one for the task of CMRA segmentation 
across two datasets with different original resolution. 
We demonstrated that, in absence of many ground truth 
cases, a domain adaptation approach is beneficial, and 
this can be used to accurately segment bigger structures 
as well as minor ones, and to generate synthetic images of 
specific imaging modalities.
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GAN	� Generative adversarial network
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Additional file 1: Table S1. Table of comparison between all methods 
in Dataset 1 (MMWHS). The percentage of supervision is specified in 
brackets. Each entry represents Dice (odd rows) and ASD (even rows) aver-
age results across entire dataset. Best results are highlighted in red (Dice), 
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Dataset 2 (HRMRA). The percentage of supervision is specified in brackets. 
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avg ± std signed differences (RMSE) between ground truth volumes (top 
row) and predicted volumes. The second column refers to the supervi-
sion level adopted in the experiment. The best result per each method is 
highlighted in bold, and the best result overall is color-coded. MMWHS 
Dataset. Figure S1. Results grouped by label. In each boxplot, statisti-
cal analysis is conducted between experiments obtained by different 
methods, as per legend on the top left corner. Dashed brackets for p <= 
5.00e−02, square brackets for p <= 1.00e−03. HRMRA Dataset.  Figure S2. 
Results grouped by label. In each boxplot, statistical analysis is conducted 
between experiments obtained by different methods, as per legend on 
the top left corner. Dashed brackets for p <= 5.00e-02, square brackets for 
p <= 1.00e-03. MMWHS Dataset.

Additional file 2. Video S1. Show complete volume label maps obtained 
using the GAN-based and VAE-based approaches respectively for infer-
ence on one case from the HRCMRA dataset. Legend for segmentation 
labels as follows: LV = turquoise, LVM = orange, RV = blue, LA = green, RA 
= yellow, AO = grey.

Additional file 3: Video S2. Show complete volume label maps obtained 
using the GAN-based and VAE-based approaches respectively for infer-
ence on one case from the HRCMRA dataset. Legend for segmentation 
labels as follows: LV = turquoise, LVM = orange, RV = blue, LA = green, RA 
= yellow, AO = grey.
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