
Chen et al. 
Journal of Cardiovascular Magnetic Resonance           (2023) 25:68  
https://doi.org/10.1186/s12968-023-00988-z

RESEARCH

A dual-stage partially interpretable neural 
network for joint suppression of bSSFP banding 
and flow artifacts in non-phase-cycled cine 
imaging
Zhuo Chen1†, Sha Hua2†, Juan Gao1, Yanjia Chen2, Yiwen Gong2, Yiwen Shen2, Xin Tang1, Yixin Emu1, 
Wei Jin2 and Chenxi Hu1*   

Abstract 

Purpose To develop a partially interpretable neural network for joint suppression of banding and flow artifacts 
in non-phase-cycled bSSFP cine imaging.

Methods A dual-stage neural network consisting of a voxel-identification (VI) sub-network and artifact-suppression 
(AS) sub-network is proposed. The VI sub-network provides identification of artifacts, which guides artifact suppres-
sion and improves interpretability. The AS sub-network reduces banding and flow artifacts. Short-axis cine images 
of 12 frequency offsets from 28 healthy subjects were used to train and test the dual-stage network. An additional 
77 patients were retrospectively enrolled to evaluate its clinical generalizability. For healthy subjects, artifact suppres-
sion performance was analyzed by comparison with traditional phase cycling. The partial interpretability provided 
by the VI sub-network was analyzed via correlation analysis. Generalizability was evaluated for cine obtained with dif-
ferent sequence parameters and scanners. For patients, artifact suppression performance and partial interpretability 
of the network were qualitatively evaluated by 3 clinicians. Cardiac function before and after artifact suppression 
was assessed via left ventricular ejection fraction (LVEF).

Results For the healthy subjects, visual inspection and quantitative analysis found a considerable reduction of band-
ing and flow artifacts by the proposed network. Compared with traditional phase cycling, the proposed network 
improved flow artifact scores (4.57 ± 0.23 vs 3.40 ± 0.38, P = 0.002) and overall image quality (4.33 ± 0.22 vs 3.60 ± 0.38, 
P = 0.002). The VI sub-network well identified the location of banding and flow artifacts in the original movie 
and significantly correlated with the change of signal intensities in these regions. Changes of imaging parameters 
or the scanner did not cause a significant change of overall image quality relative to the baseline dataset, suggesting 
a good generalizability. For the patients, qualitative analysis showed a significant improvement of banding artifacts 
(4.01 ± 0.50 vs 2.77 ± 0.40, P < 0.001), flow artifacts (4.22 ± 0.38 vs 2.97 ± 0.57, P < 0.001), and image quality (3.91 ± 0.45 
vs 2.60 ± 0.43, P < 0.001) relative to the original cine. The artifact suppression slightly reduced the LVEF (mean 
bias = -1.25%, P = 0.01).

Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecom-
mons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Journal of Cardiovascular
Magnetic Resonance

†Zhuo Chen and Sha Hua are contributed equally to this work.

*Correspondence:
Chenxi Hu
chenxi.hu@sjtu.edu.cn
Full list of author information is available at the end of the article

http://orcid.org/0000-0003-2551-3075
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12968-023-00988-z&domain=pdf


Page 2 of 12Chen et al. Journal of Cardiovascular Magnetic Resonance           (2023) 25:68 

Introduction
Balanced steady state free precession (bSSFP) cine is the 
major cine sequence in clinical imaging due to its high 
signal to noise ratio (SNR) and contrast to noise ratio 
(CNR) [1, 2]. However, two types of artifacts—banding 
artifacts and flow artifacts—are common in bSSFP cine 
and may severely degrade the image quality [3]. Band-
ing artifacts appear as dark bands in the image, and can 
be reduced by shimming, frequency scout, and phase 
cycling [4–15]. Among them, phase cycling is highly 
effective, but it also increases the scan time and has 
received limited clinical use. Furthermore, phase cycling 
often shifts the off-resonance into the flow regions, 
inducing new flow artifacts that would be otherwise 
absent. Flow artifacts can be induced by several causes, 
among which the most common one is the out-of-slice 
signals of spins flowing through a dark band. In this case, 
flow artifacts often cause spurious hyperenhancement 
along the phase-encoding direction and obscure neigh-
boring tissues [16–18]. Flow artifacts can be suppressed 
by flow-compensation gradients [19], partial dephasing 
[20, 21], and slice-encoding [22].

Although the methods above can suppress the two arti-
facts, most of them require sequence modifications [23]. 
On the other hand, deep learning-based post-processing 
methods have received little attention for this applica-
tion despite its outstanding performance in suppres-
sion of other artifacts [24–29]. Thus far, deep learning 
has only been applied to suppress banding artifacts in 
non-cine bSSFP imaging [30]. Removing banding arti-
facts for bSSFP cine imaging is more challenging because 
acquisition of cine movie labels free of both banding and 
flow artifacts is more difficult. Moreover, deep learn-
ing is often criticized for its lack of interpretability [31]. 
When artifacts are removed, whether the removal was 
truly based on recognition of the artifacts often remains 
unknown for a simple neural network.

In this study, we sought to develop a partially inter-
pretable dual-stage network to jointly suppress banding 
and flow artifacts in non-phase-cycled bSSFP cine imag-
ing (i.e. regular bSSFP cine). Since the method does not 
require acquisition of phase-cycled data in the testing 
stage, the method is a post-processing technique. Inter-
pretability of the network was improved by using two 
cascaded U-Nets, in which the first U-Net [32] recog-
nizes the location and type of artifacts, and the second 

U-Net suppresses the artifacts with the guidance of the 
first U-Net. The dual-stage network was trained using a 
phase-cycling method tailored to improve the balance 
between suppression of banding artifacts and promotion 
of flow artifacts. Evaluation was performed with both 
healthy subjects and patients using a variety of sequence 
parameters.

Materials and methods
Imaging data
Imaging was performed in both healthy subjects and 
patients, who were prospectively enrolled from a 
research institution and retrospectively enrolled from a 
hospital, respectively. The healthy-subject data was used 
to train and test the proposed neural network with dif-
ferent sequence parameters. The patient data was used 
to evaluate generalizability of the network for a differ-
ent scanner and cohort. The study was approved by the 
institutional review board from each participating insti-
tution. All healthy subjects and patients provided written 
informed consent prior to the scan.

Baseline dataset
Twenty-eight healthy subjects (10 male, age 24 ± 2 years) 
were imaged with a bSSFP cine sequence in a 3T scanner 
(uMR 790, United Imaging Healthcare, Shanghai, China) 
with a 12-channel torso coil and 32-channel spine coil. 
For each subject, a retrospectively gated cine sequence 
was performed in three short-axis slices located in the 
apex, mid-ventricle, and base of the left ventricle (LV). 
For each slice, the sequence was repeated 12 times, each 
with a different center frequency. The resultant center 
frequencies uniformly covered the off-resonance fre-
quency range between -1/(2*TR) and 1/(2*TR). Sequence 
parameters are noted in Table 1.

Generalization dataset
Eleven healthy subjects (4 males, age 24 ± 2  years) were 
also imaged with altered sequence parameters to evaluate 
generalizability of the method. A total of 4 carefully cho-
sen parameters, including the bandwidth, flip angle, slice 
thickness, and imaging views, were individually altered 
in the experiment. The bandwidth was changed from 
the baseline 1000 Hz to 500 Hz, which incurred a longer 
TR and thus more banding artifacts. The flip angle was 
changed from the baseline 60° to 30°, which damped the 

Conclusions The dual-stage network simultaneously reduces banding and flow artifacts in bSSFP cine imag-
ing with a partial interpretability, sparing the need for sequence modification. The method can be easily deployed 
in a clinical setting to identify artifacts and improve cine image quality.
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myocardium-to-blood contrast and changed the inten-
sity distribution. The slice thickness was changed from 
the baseline 8 mm to 5 mm, which caused stronger flow 
artifacts. The imaging view was changed from the base-
line short-axis view to 2-chamber and 4-chamber views, 
which changed the image appearance. For the generaliza-
tion dataset, only 4 center frequencies uniformly cover-
ing the frequency range between −1/(2*TR) and 1/(2*TR) 
were imaged. Other parameters are noted in Table 1.

Clinical dataset
A total of 77 patients (53 male, age 50 ± 17 years) consec-
utively scanned between July 2022 and February 2023 in 
the Ruijin-Luwan Hospital were retrospectively enrolled. 
All patients were scanned on a 3T clinical scanner (uMR 
890, United Imaging Healthcare, Shanghai, China) with 
a 12-channel torso and 32-channel spine coil. Clinical 
indications included ischemic cardiomyopathies (n = 2), 
nonischemic cardiomyopathies (n = 47), arrhythmia 
(n = 4), hypertension (n = 3), heart failure (n = 3), and 
physical examination (n = 18). Retrospectively gated 
bSSFP cine imaging was performed in 9–15 short-
axis slices covering the whole LV and 2 long-axis slices 
(2-chamber and 4-chamber). Other sequence parameters 
are noted in Table 1.

Dual‑stage partially‑interpretable neural network
Architecture
Figure  1A shows a schematic of the proposed neural 
network. The network comprises of two sub-networks: 
a voxel identification (VI) sub-network to identify the 
artifacts and an artifact suppression (AS) sub-network 
to suppress the artifacts. Both sub-networks use a 
3-dimensional U-Net architecture as the backbone 
[32], with nearly the same architecture except for the 
input and output layers. The VI sub-network takes 
the original cine movie as input and outputs a voxel-
identity map (VI map), which has a value near 1 if the 
underlying voxel is in a dark band, near 0 if in a flow 
artifact, and around 0.5 if in an artifact-free zone. The 
AS sub-network takes both the original cine movie and 
the corresponding VI map as the inputs, and outputs 
an artifact-suppressed cine movie. Additional file  1 
provides a detailed explanation of the architecture 
used by both VI and AS sub-networks.

Generation of training labels
Training of the dual-stage network requires cine movies 
free of both banding and flow artifacts. In this work, we 
use phase cycling to generate these cine movie labels, as 
illustrated in Fig. 1B. However, to avoid incurrence of flow 

Table 1 Acquisition parameters for each dataset

Sax, short-axis; 2-ch,  2-chamber; 4-ch,  4-chamber; TR,  repetition time; TE,  echo time; RO,  readout; PE,  phase-encoding
a 1,1 indicates the number of slices for 2-ch and 4-ch is 1 and 1, respectively
b 9–15,1,1 indicates the number of slices for short-axis, 2-ch and 4-ch is 9–15, 1 and 1, respectively

Key characteristics Baseline dataset Generalization dataset Clinical dataset

Baseline 
parameters

Altered 
bandwidth

Altered flip angle Altered slice 
thickness

Altered views A different scanner

Type of subjects Healthy subjects Healthy subjects Healthy subjects Healthy subjects Healthy subjects Patients

Number of subjects 28 11 11 11 11 77

View Sax SAx SAx SAx 2-ch, 4-ch Sax, 2-ch, 4-ch

FOV (RO × PE, mm) 360 × 320 360 × 320 360 × 320 360 × 320 360 × 320 360 × 320 or 380 × 340

Matrix size (RO × PE) 336 × 298 336 × 298 336 × 298 336 × 298 336 × 298 336 × 298 or 336 × 300

Number of slices 3 1 1 1 1,  1a 9–15, 1,  1b

Slice thickness (mm) 8 8 8 5 8 8

Number of cardiac 
phases

25 25 25 25 25 25

TR (msec) 2.86 or 2.98 3.62 or 3.71 2.86 or 2.98 3.15 or 3.17 2.86 or 2.98 3.03–3.10

TE (msec) 1.31 or 1.37 1.60 or 1.66 1.31 or 1.37 1.46 or 1.44 1.31 or 1.37 1.42–1.46

Bandwidth (Hz/
pixel)

1000 500 1000 1000 1000 1000

Flip angle (°) 60 60 30 60 60 44–60

Frequency offsets 
(Hz)

 ± 137.5, ± 110, ± 82.5
, ± 55, ± 27.5, 0, 165

0, 55, 110, 165 0, 55, 110, 165 0, 55, 110, 165 0, 55, 110, 165 0

Total number 
of movies

1008 44 44 44 44, 44 905, 77, 77
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artifacts, we developed a short-range phase cycling (SPC) 
method, which only averaged cine movies collected at 5 
central frequency offsets (0, ± 27.5, and ± 55  Hz). Since 
these frequencies typically do not incur banding artifacts 
in the heart, the risk of flow-artifact incurrence is con-
siderably reduced. On the other hand, inclusion of the 
5 central frequencies covered nearly ½ of the full phase-
cycling range and thus their linear combination consid-
erably reduces the banding artifacts. The proposed SPC 
thus achieves a better balance between suppression of 
banding and flow artifacts in comparison with traditional 
phase cycling, which cycles through the entire range of 
frequencies. The latter was termed “full-range phase 
cycling” (FPC) and compared with the SPC-trained net-
work in our experiment.

Once the SPC label was obtained, the train-
ing label for the VI sub-network was generated by 
sigmoid(SPC_label/original_cine− 1) . This formula 
ensures that the resultant image has an intensity between 
0 and 1. Furthermore, since dark bands are dark and flow 
artifacts in concern of this paper are bright, their corre-
sponding intensities after these operations are near 1 and 

0, respectively, providing an intrinsic identification of 
these two artifacts.

Training
Short-axis cine movies collected from 18 healthy subjects 
were used for training, generating a training dataset of 
648 (18 subjects × 3 slices × 12 frequency offsets) mov-
ies. Movies from the remaining 10 healthy subjects in 
the baseline dataset were used for testing. Details of the 
pre-processing steps and training parameters are found 
in Additional file  1. Note that the VI sub-network was 
trained before the AS sub-network. During training of 
the AS sub-network, the VI sub-network was frozen and 
only used to provide the VI map.

Evaluation
Evaluation of the proposed method comprised of sev-
eral experiments, which are briefly described blow. More 
details about the evaluation are found in Additional file 1.

Artifact suppression performance
The performance of artifact suppression was verified by 
comparing the averaged signal of the network output in 

Fig. 1 Schematic of the dual-stage network and generation of the training labels. A The dual-stage network consists of VI and AS sub-networks. 
Both sub-networks use a 3-dimensional U-Net as the backbone. The output from the VI sub-network provides a soft classification of banding 
and flow artifacts, which is used to guide artifact suppression by the AS sub-network and improve interpretability of the network. B Twelve 
cine movies each with a different center frequency offset were obtained. Average of the movies with 5 centric frequency offsets (red boxes) 
generated the label for training of the AS sub-network. The corresponding method was called “short-range phase cycling (SPC)”. The label for the VI 
sub-network was obtained through the equation sigmoid(SPC_label/original_cine − 1) based on the SPC-combined image and the original 
cine. Since banding artifacts are dark and flow artifacts in concern of this paper are bright, this equation generates an intrinsic label for the VI 
sub-network
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the heart over 12 frequency offsets. If artifacts were sup-
pressed, the averaged signal should be nearly constant 
over different frequencies. The accuracy of artifact identi-
fication by the VI sub-network was verified by comparing 
its output with the training label in the heart.

Comparison with FPC
The proposed network was further compared with FPC 
in terms of banding artifacts, flow artifacts, and overall 
image quality to see if there exists any advantage. The 
comparison was based on qualitative scoring using a 
5-point Likert scale (1: non-diagnostic; 2: poor; 3: fair; 4: 
good; and 5: excellent) from 3 readers (CH with 8 years of 
CMR experience, JG and XT with 4 years of CMR expe-
rience). Each reader performed the evaluation indepen-
dently and blindly, and their scores were averaged for the 
final assessment.

Partial interpretability
To investigate the consistency between the VI map and the 
AS output, we performed a correlation analysis between 
the VI map and sigmoid(AS_output/original_cine− 1) 
for the mid-ventricle slice of each subject in the testing 
dataset. A correlation between the two variables indi-
cates that an observation of high or low values in the VI 
map predicts a modification of the input image at the 
same place.

Generalizability
Generalizability of the dual-stage network was evalu-
ated by comparing the network output between different 
imaging groups, including the testing dataset (baseline), 
the reduced-bandwidth dataset (BW), the reduced-flip-
angle dataset (FA), the reduced-slice-thickness dataset 
(ST), the long-axis dataset (LAx), and the clinical dataset 
(Clin). The data across all groups were merged together 
and the evaluation was unpaired. Qualitative evaluations 
were performed by the same readers (CH, JG, and XT) 
blindly and independently, according to the same 5-point 
Likert scale. Their scores were averaged for the final 
assessment.

Clinical evaluations
Performance of the dual-stage network for the clini-
cal dataset was evaluated by three clinicians, including 
two cardiologists and a technologist (SH, YG, and YS, 
with 4, 3, and 4 years of CMR experience, respectively). 
Forty-eight patients with relatively severe image artifacts 
in the original cine movie were chosen by an observer 
blinded to the network output. For each patient, the 
original movie, the VI map, and the AS output image 
were reviewed by each clinician. The clinicians were not 
blinded to the identity of each movie, because of their 

large difference in appearance and the need to evaluate 
the partial interpretability. Banding artifact suppres-
sion, flow artifact suppression, and overall image quality 
were scored using the 5-point Likert scale. Identifica-
tion of banding and flow artifacts by the VI sub-network 
was scored using a two-point scale (1: the VI map does 
not help identification of the artifacts; and 2: the VI map 
helps identification of the artifacts).

The LV ejection fraction (LVEF) was quantified in the 
77 patients for both the original short-axis cine mov-
ies and the artifact-suppressed movies. The assessment 
aimed to show whether the artifact suppression caused 
any clinically significant changes of LVEF.

Statistical analysis
The Wilcoxon signed-rank test was used to evaluate dif-
ferences in paired qualitative comparisons and Wilcoxon 
rank-sum test in unpaired qualitative comparisons. 
Paired t-test and Bland–Altman plots were used to eval-
uate the LVEF difference between the original and arti-
fact-suppressed movies. The inter-observer agreement 
was evaluated by intraclass correlation coefficient (ICC). 
P < 0.05 was considered statistically significant. Statistical 
analyses were performed using IBM SPSS Statistics (ver-
sion 27.0, IBM, Armonk, New York, USA).

Results
Artifact suppression performance
In the testing dataset, the original cine exhibited a peri-
odic signal variation in the heart over 12 frequency off-
sets due to the presence of banding or flow artifacts. The 
AS sub-network output showed considerably smaller var-
iations over the 12 frequencies and a higher consistency 
with the label (Fig. 2A). The VI sub-network output and 
its label exhibited a consistent trend (Fig. 2B), which was 
anti-correlated with the mean intensity of the original 
cine, suggesting that the VI sub-network correctly classi-
fied the artifact category in the heart. Two representative 
examples are shown in Fig. 2C.

Comparison with FPC
Figures  3 and 4 show exemplary suppressions of the 
banding and flow artifacts by the dual-stage network, 
FPC, and SPC at two frequencies. All three methods well 
suppressed the banding artifacts relative to the original 
images (Fig.  3). However, only the dual-stage network 
and SPC well suppressed the flow artifacts, whereas FPC 
did not (Fig.  4). The qualitative analysis (Fig.  5) shows 
that both the network and FPC achieved banding arti-
fact scores of 4.30 ± 0.40 and 4.60 ± 0.31, respectively, 
higher than that of the original cine (2.53 ± 0.42). How-
ever, for flow artifacts, the dual-stage network achieved 
higher scores than both the original cine (4.57 ± 0.23 vs 
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3.00 ± 0.35, P = 0.002) and FPC (3.40 ± 0.38, P = 0.002). 
Furthermore, the overall quality of the dual-stage net-
work was significantly higher than the original cine 
(4.33 ± 0.22 vs 3.00 ± 0.47, P = 0.002) and FPC (3.60 ± 0.38, 

P = 0.002), likely due to the better suppression of flow 
artifacts. ICCs of the 3 readers were 0.87 (95% CI [0.64, 
0.94]) for banding artifacts, 0.60 (95% CI [0.28, 0.80]) for 

Fig. 2 Performance of the dual-stage network in the multi-frequency testing dataset. A The mean intensities of the original cine, AS sub-network 
output, and AS sub-network label in the end-diastolic heart. Consistent with the labels, the AS output showed considerably smaller variations 
and relatively constant mean signals across the 12 frequency offsets. B The mean values of VI sub-network output was consistent with the mean 
values of the VI sub-network label in the end-diastolic heart. Furthermore, the VI outputs had an anti-correlated variation relative to the mean 
intensity of the original cine images, suggesting a good classification of the artifact categories by the VI sub-network. C Two representative 
examples with a frequency offset of − 110 Hz and 165 Hz, respectively. ROIs were circled in yellow. AS, artifact suppression; VI, voxel identification

Fig. 3 A representative example of banding artifact suppression by the proposed network, FPC, and SPC at two different frequencies. Banding 
artifacts appeared in the heart, abdomen, and subcutaneous fat regions (yellow arrows). All three methods suppressed these banding artifacts. FPC, 
full-range phase cycling; SPC, short-range phase cycling
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flow artifacts, and 0.58 (95% CI [0.16, 0.80]) for overall 
image quality.

Partial interpretability
Figure 6 shows the significant correlations between vox-
elwise VI values and image modifications represented by 
sigmoid(AS_output/original_cine− 1) for a single sub-
ject. The original cine, VI output, and AS output movies 
of this subject are shown in Additional file  2. This cor-
relation was significant for every subject in the testing 
dataset (P < 0.001; R2 = 0.89 ± 0.02 for end-diastole and 

0.89 ± 0.01 for end-systole). The results suggest that the 
VI values can be used to interpret the modification of the 
input cine image by the dual-stage network.

Generalizability
Compared with the baseline (4.77 ± 0.35), changes 
of bandwidth (4.83 ± 0.28, P = 0.69), slice-thickness 
(4.73 ± 0.54, P = 0.79), imaging view (4.77 ± 0.27, P = 0.83), 
and scanner (4.50 ± 0.55, P = 0.21) did not cause signifi-
cant changes of banding artifacts, whereas reduction of 
flip angle to 30° slightly increased the banding artifacts 
(4.13 ± 0.53, P = 0.01) (Fig.  7). For the flow artifacts, 
changes of bandwidth (3.97 ± 0.64, P = 0.37), flip angle 
(3.97 ± 0.43, P = 0.47), and imaging view (4.37 ± 0.58, 
P = 0.20) did not significantly change the scores, whereas 
decreased slice thickness caused increased flow artifacts 
(3.77 ± 0.32, P = 0.03), and the clinical scanner caused 
decreased flow artifacts (4.73 ± 0.38, P = 0.003). Finally, 
the overall image quality was not significantly changed 
for every generalization dataset (BW: 3.93 ± 0.64, P = 0.40; 
FA: 3.67 ± 0.44, P = 0.10; ST: 3.90 ± 0.39, P = 0.39; Lax: 
4.03 ± 0.40, P = 0.81; Clin: 4.20 ± 0.50, P = 0.61) relative 
to the baseline (4.03 ± 0.51). ICCs of the 3 readers for 
the comparison were 0.73 (95% CI [0.59, 0.83]) for band-
ing artifacts, 0.80 (95% CI [0.69, 0.88]) for flow artifacts, 
and 0.62 (95% CI [0.42, 0.76]) for overall image quality. 
Figure  8 shows some demonstrative examples of the 5 
groups when sequence parameters or the scanner was 
changed. Overall, the dual-stage network was able to 
achieve a similar performance in suppression of band-
ing and flow artifacts compared with the baseline dataset. 

Fig. 4 A representative example of flow artifact suppression by the proposed network, FPC, and SPC at two different frequencies. Flow artifacts 
appeared in the heart and abdomen regions (yellow arrows). Both the dual-stage network and SPC well reduced flow artifacts. On the other hand, 
FPC still resulted in considerable flow artifacts in the heart region. FPC, full-range phase cycling; SPC, short-range phase cycling

Fig. 5 Qualitative comparisons of the original cine movie, 
the dual-stage network output, and FPC output by a 5-point Likert 
scale (5 is the best). The dual-stage network and FPC reduced 
banding artifacts compared to the original cine. The dual-stage 
network improved flow artifacts compared to both the original cine 
and FPC. Both the dual-stage network and FPC improved image 
quality than the original cine. Furthermore, the dual-stage network 
yielded a better image quality than FPC. FPC, full-range phase cycling
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The VI sub-network also performed well in terms of arti-
fact identification.

Clinical evaluations
Over the 48 patients, the dual-stage network signifi-
cantly improved banding artifact scores (4.01 ± 0.50 vs 
2.77 ± 0.40, P < 0.001), flow artifact scores (4.22 ± 0.38 
vs 2.97 ± 0.57, P < 0.001), and overall image quality 
(3.91 ± 0.45 vs 2.60 ± 0.43, P < 0.001) relative to the origi-
nal cine (Additional file  3: Fig. S1). Furthermore, in 47 

patients (97.92%), all 3 readers agreed that the VI map 
helps identification of the two types of artifacts. ICCs 
of 3 clinicians were 0.64 (95% CI [0.02, 0.85]) for band-
ing artifacts, 0.82 (95% CI [0.29, 0.93]) for flow artifacts, 
and 0.71 (95% CI [0.06, 0.89]) for overall quality. These 
results suggest that the proposed network performed 
well in the clinical dataset, which was from a different 
scanner and a different cohort of patients. LVEF of the 
artifact-suppressed movies significantly correlated with 
that of the original movie ( R2=0.91) in the 77 patients 
(Fig. 9). Bland–Altman analysis shows that the dual-stage 
network output led to a slightly reduced LVEF (mean 
bias = − 1.25%, P = 0.01).

Processing time
The proposed technique takes less than a second on our 
server for processing a single cine movie loop.

Discussion
In this work, we propose a partially interpretable dual-
stage neural network for joint suppression of banding 
and flow artifacts in non-phase-cycled bSSFP cine. As 
a post-processing technique, the method reduces band-
ing and flow artifacts relative to traditional cine with-
out modifying the sequence. In addition, the proposed 
method does not provoke new flow artifacts due to the 
involvement of large frequency offsets, which is a prob-
lem for traditional full-range phase cycling. The VI stage 
of the network not only identifies where and which type 
of artifacts is present, but also explains why the network 
modifies the original image in the corresponding manner. 
In a busy clinical environment, clinicians may not have 
enough time to check for artifacts in every cine frame 
and slice. Owing to its partial interpretability and fast 
processing, the proposed network can be easily deployed 

Fig. 6 Results of the voxel-level correlation between the VI output and image modification evaluated by sigmoid(AS_output/original_cine− 1) 
at both end-diastole (A) and end-systole (B) of a single subject. The two variables significantly correlated with each other. VI, voxel identification; AS, 
artifact suppression

Fig. 7 The results of unpaired statistical comparisons 
between the baseline dataset (baseline), which had the same 
sequence parameters with the training dataset, and other datasets, 
which had different sequence parameters. The change of sequence 
parameters included reduced bandwidth (BW), reduced flip angles 
(FA), reduced slice-thickness (ST), use of long-axis views (Lax), 
and use of a clinical scanner for imaging of patients (Clin). Except 
the FA group, the banding artifact suppression was not significantly 
different compared with the baseline. Except the Lax and Clin 
groups, the flow artifact suppression was not significantly different 
compared with the baseline. The overall image quality for all groups 
of changed parameters was not significantly different compared 
with the baseline. These results suggest that the proposed network 
was reasonably generalizable when relevant sequence parameters 
were changed
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in a clinical environment to both alert clinicians about 
the presence of artifacts and suppress them to improve 
the image quality.

Performance of the method in suppressing the two 
artifacts is largely driven by two factors in training of the 
network. Firstly, we developed a novel approach, which is 
the short-range phase cycling method, to obtain training 

labels. Prior to this work, how to jointly suppress banding 
and flow artifacts in bSSFP cine remains an open ques-
tion. The challenge is that although phase cycling can 
well suppress banding artifacts, it also promotes flow 
artifacts in the image, which are difficult to completely 
suppress [14]. Several methods have been proposed, yet 
no one has been commonly used in practice [23]. Our 

Fig. 8 Six representative cine images and their corresponding VI sub-network outputs and AS sub-network outputs for different imaging 
parameters relative to the baseline dataset. Banding artifacts in the heart, abdomen, and subcutaneous fat, and the flow artifacts in the aorta 
were well suppressed by the dual-stage network, even though the latter was not trained with these imaging parameters, views, or scanner. The 
VI maps generated by the VI sub-network identified the location and type of each artifact, rendering the correction results interpretable. VI, voxel 
identification; AS, artifact suppression

Fig. 9 The correlation and difference between the LVEF evaluated using the original cine movies and that using the network-processed cine 
movies. The analysis was performed over 77 patients from the clinical dataset. There was a significant correlation between the two LVEFs (A). The 
difference between the two LVEF measurements was significant but very small (− 1.25%) and would usually not induce any difference for clinical 
diagnosis (B). LVEF, left ventricle ejection fraction
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data suggest that the proposed short-range phase cycling 
method can well address this issue. Another driver of the 
performance is the inclusion of 12 frequency offsets that 
densely cover the whole 2π range of the bSSFP spectral 
period [1]. Since each frequency is associated with differ-
ent banding and flow artifact patterns, inclusion of them 
improves the diversity of the training data and generaliz-
ability of the method.

The artifact identification of the VI sub-network can 
be viewed as a “soft classification” task, where the label 
values are not binary but vary continuously between 0 
and 1. Soft classification strategies have been also used in 
other computer vision tasks [33]. For our task, the adop-
tion of sigmoid(SPC_label/original_cine− 1) as a natural 
label for VI sub-network provides an objective and sen-
sitive label for artifact identification. Consequently, the 
VI sub-network can even detect the zippers of the flow 
artifacts in the background, which is difficult to detect 
even by human observers. However, this label implicitly 
assumes that flow artifacts are always bright and banding 
artifacts are always dark. While this assumption is usu-
ally true, flow artifacts can also cause signal loss [16]. For 
those hypoenhanced flow artifacts, however, the network 
would consider them as banding artifacts, introducing a 
potential bias to the artifact identification.

An important observation from the results is that the 
network can only recover information based on the input 
image. If the artifacts occupy a large area in the image, 
the recovery of this area is an inference—much like 
what human observers would do in their mind—rather 
than a truthful reconstruction. Compared with phase 
cycling which obtains information from multiple fre-
quencies, discrepancies may arise in those areas since 
phase cycling receives information that is invisible to the 
proposed method. Nevertheless, this problem may be 
resolved by combining e.g. two-fold phase cycling with 
a neural network. A standard linear combination from 
two-fold phase cycling may not result in satisfactory per-
formance [5]. With the help of neural networks, this task 
can be more easily solved, so that both scan time can be 
reduced and reconstruction quality can be improved. In 
our results, we have also observed slight blurring, which 
is more evident in the abdomen and less in the heart. 
Potential causes of the blurring include the limitation of 
U-Net on preservation of fine-grained details [34], a lack 
of training data especially for the abdominal area, and 
the intrinsic blur in the SPC label due to a combination 
of multiple images acquired from different breath-holds. 
The use of more advanced architectures [34] or loss func-
tions [35] and a collection of more training data may help 
to reduce the blurring. The slight blurring may explain 
the small LVEF discrepancy between the original cine 
and network-processed cine in the clinical dataset.

The unpaired, randomized evaluation of the net-
work performance for different parameter variations 
confirmed that the method has a reasonable generaliz-
ability when sequence parameters or even the scanner 
is changed. While the performance was slightly reduced 
for certain parameter variations, such as the flip angle for 
band artifacts and slice thickness for flow artifacts, the 
performance reduction was within a reasonable range 
and did not significantly impair the image quality. The 
sensitivity of banding artifact suppression to a reduced 
flip angle may be explained by the poorer CNR and SNR. 
It is known that changes of image contrast can be a hur-
dle to generalization of deep learning models [36]. The 
reduction of slice thickness is known to increase flow 
artifacts [22]. An interesting finding is that the clinical 
dataset after processing by the proposed network had 
higher flow artifact scores than the baseline dataset. This 
may be due to a number of factors, such as the scan-
ner difference, a better shimming, and subject charac-
teristics. As many of the patients are elder people with 
cardiac dysfunction, their blood flow may be slower com-
pared with young, healthy subjects, generating less flow 
artifacts.

Limitations
Our study has limitations. Firstly, the qualitative clinical 
evaluation was performed in an unblinded fashion due 
to the apparent differences between regular cine and the 
network output, and the need to evaluate interpretabil-
ity of the method. Although the readers were required 
to strictly comply with the criteria, potential bias may 
exist in the scoring. Secondly, the evaluation was based 
on data collected from a single vendor in two centers, 
which include a research institution and a clinical center. 
The sample size for clinical evaluation of the method was 
relatively small. Although the current sample size is suf-
ficient to verify feasibility of the proposed method, gen-
eralizability of it to multi-vendor cine data collected from 
a larger cohort at multiple clinical centers awaits to be 
investigated.

Conclusion
In conclusion, we propose a partially interpretable dual-
stage neural network for joint suppression of banding and 
flow artifacts in bSSFP cine imaging. This post-process-
ing method can reliably reduce banding and flow artifacts 
without a need for sequence modification, and provides 
artifact identity information to help interpretation of the 
results. The method can be potentially useful in a clinical 
setting to identify artifacts and improve image quality of 
bSSFP cine imaging.
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SPC  Short-range phase cycling
BW  Reduced-bandwidth
FA  Reduced-flip-angle
ST  Reduced-slice-thickness
LAx  Long-axis
Clin  Clinical
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