Journal of Cardiovascular Magnetic Resonance

Meeting abstract

Open Access

2099 Cardiac MRI @ 7-Tesla: initial experiments in pigs

Harald H Quick*, Frank Breuckmann, Kai Nassenstein, Stefan Maderwald, Lena Schäfer, Mark E Ladd and Jörg Barkhausen

Address: University Hospital Essen, Essen, Germany

* Corresponding author

from 11th Annual SCMR Scientific Sessions Los Angeles, CA, USA. I–3 February 2008

Published: 22 October 2008

Journal of Cardiovascular Magnetic Resonance 2008, 10(Suppl 1):A368 doi:10.1186/1532-429X-10-S1-A368

This abstract is available from: http://jcmr-online.com/content/10/S1/A368 © 2008 Quick et al; licensee BioMed Central Ltd.

Introduction

Cardiac MRI at high field strengths is a potentially challenging endeavour for numerous reasons: the heart is subject to cardiac and breathing motion, necessitating ECG and navigator triggered or suspended breathing sequences to capture the beating heart. Its position deep within the body and surrounded by lung tissue renders homogenous RF signal transmission and MRI signal reception difficult.

Purpose

The purpose of this study was to perform cardiac MRI at 7-Tesla in a pig model in order to evaluate potential advantages and disadvantages specifically associated with cardiac MR imaging at this high field strength.

Materials and methods

Two fully anaesthetized and ventilated minipigs weighing 25 kg and 27 kg were placed feet first in supine position inside an 8-channel transmit/receive head coil (Rapid Biomedical, Würzburg, Germany) such that the thorax was completely covered by the sensitive region of the RF coil with the heart being centered in the middle of the coil. Scanning was performed on a 7-Tesla whole-body MRI system (Magnetom 7 T, Siemens Medical Solutions, Erlangen, Germany). Cardiac function along standard views (short and long axis, 4-chamber, 2-chamber, LVOT) was evaluated using ECG-triggered TrueFISP retro (TR/TE 4.4/ 2.2 ms; FOV 280 × 228 mm²; matrix 512 × 432; slice 4 mm; bandwidths (BW) 650 Hz/pixel; flip 30°, 25 phases per RR-interval) and Cine FLASH sequences (TR/TE 6.0/ 2.6 ms; FOV 280 × 228 mm²; matrix 256 × 208; slice 4 mm; BW 650 Hz/pixel; flip 15°, 25 phases per RR-interval). Additionally, myocardial tagging was performed in conjunction with FLASH sequences. Image quality was visually assessed for signal homogeneity and myocardium-to-blood contrast.

Results

The fully anesthetized and ventilated animals could successfully be examined under stable cardiac conditions (heart rate 60–90 bpm) over the full length of the experiments (8 hours). Cardiac MRI at 7-Tesla was successful in both animals. While TrueFISP images were degraded by banding artifacts and the resulting signal inhomogeneities, especially at the heart/lung tissue interface (Fig. 1A), the FLASH sequence provided excellent imaging quality with good signal homogeneity over almost the entire heart and with high myocardium-to-blood contrast (Fig. 2). The achieved spatial resolution was $1.1 \times 1.1 \times 4$ mm³.

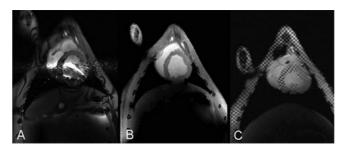


Figure I
Short axis views: (A) TrueFISP, (B) FLASH, (C) FLASH plus tagging grid.

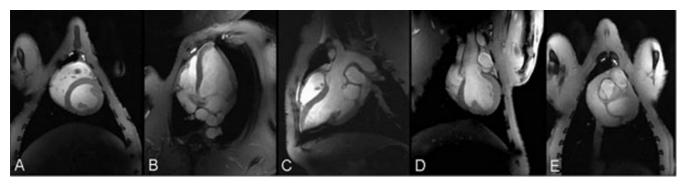


Figure 2
Cine FLASH images of the pig heart: (A) short axis, (B) 4-chamber, (C) LVOT, (D) LVOT 2nd plane (E) aortic valve.

Additional use of tagging RF pulses with the FLASH sequence provided high-contrast tagging grids on the myocardium that persisted over the full length of the cardiac cycle (Fig. 1C).

Conclusion

This study can be considered an initial step towards cardiac imaging in high-field MRI. While TrueFISP images seemed to be susceptible to B₀ inhomogeneities and thus were severely degraded by artifacts, the FLASH sequence provided excellent image quality, contrast, and spatial resolution for evaluation of cardiac function. Transfer of these initial animal results into human cardiac MRI will strongly depend on the RF technology available.

Publish with **Bio Med Central** and every scientist can read your work free of charge

"BioMed Central will be the most significant development for disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

- available free of charge to the entire biomedical community
- \bullet peer reviewed and published immediately upon acceptance
- cited in PubMed and archived on PubMed Central
- \bullet yours you keep the copyright

Submit your manuscript here: http://www.biomedcentral.com/info/publishing_adv.asp

