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Abstract
Background: Although cardiovascular magnetic resonance (CMR) is frequently performed to measure accurate LV
volumes and ejection fractions, LV volume-time curves (VTC) derived ejection and filling rates are not routinely
calculated due to lack of robust LV segmentation techniques. VTC derived peak filling rates can be used to accurately
assess LV diastolic function, an important clinical parameter. We developed a novel geometry-independent dual-contour
propagation technique, making use of LV endocardial contours manually drawn at end systole and end diastole, to
compute VTC and measured LV ejection and filling rates in hypertensive patients and normal volunteers.

Methods: 39 normal volunteers and 49 hypertensive patients underwent CMR. LV contours were manually drawn on
all time frames in 18 normal volunteers. The dual-contour propagation algorithm was used to propagate contours
throughout the cardiac cycle. The results were compared to those obtained with single-contour propagation (using
either end-diastolic or end-systolic contours) and commercially available software. We then used the dual-contour
propagation technique to measure peak ejection rate (PER) and peak early diastolic and late diastolic filling rates (ePFR
and aPFR) in all normal volunteers and hypertensive patients.

Results: Compared to single-contour propagation methods and the commercial method, VTC by dual-contour
propagation showed significantly better agreement with manually-derived VTC. Ejection and filling rates by dual-contour
propagation agreed with manual (dual-contour – manual PER: -0.12 ± 0.08; ePFR: -0.07 ± 0.07; aPFR: 0.06 ± 0.03 EDV/s,
all P = NS). However, the time for the manual method was ~4 hours per study versus ~7 minutes for dual-contour
propagation. LV systolic function measured by LVEF and PER did not differ between normal volunteers and hypertensive
patients. However, ePFR was lower in hypertensive patients vs. normal volunteers, while aPFR was higher, indicative of
altered diastolic filling rates in hypertensive patients.

Conclusion: Dual-propagated contours can accurately measure both systolic and diastolic volumetric indices that can
be applied in a routine clinical CMR environment. With dual-contour propagation, the user interaction that is routinely
performed to measure LVEF is leveraged to obtain additional clinically relevant parameters.
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Background
Temporal changes in left ventricular (LV) volume over the
cardiac cycle provides fundamental information regarding
systolic and diastolic function of the heart but is difficult
to measure by standard clinical techniques. Cine cardio-
vascular magnetic resonance (CMR) using serial short axis
slices is well accepted as a gold standard for measuring
geometry-independent ventricular volumes [1,2]. Meas-
urement of LV ED and ES volumes is based on drawing
contours at the ED and ES time points. If contours could
be reliably identified in all acquired time frames, ventricu-
lar volume-time curves (VTC) could be constructed, from
which important parameters of ventricular function such
as peak ejection rates (PER) and peak filling rates (PFR)
[3,4] can be derived. These parameters may complement
flow indices [5] in the assessment of diastolic function.

Fully automated contouring techniques have been a
research topic for many years [6-15], and, more recently,
techniques have been developed for propagating contours
drawn at single time frame to the remaining time frames
[16-22]. While the accuracy of these methods continues to
improve, contour review and editing by a trained expert is
still mandatory. A common problem encountered in
myocardial contour identification is the presence of pap-
illary muscles; following the echocardiographic conven-
tion, papillary muscles are often excluded from the
endocardial contour. At ED in the short axis CMR image,
papillary muscles are usually not a problem because they
are separated from the LV wall. During systole, however,
the papillary muscles move close to the LV wall, and it can
be difficult to distinguish papillary muscles from the heart
wall without carefully examining the images. For this rea-
son, fully automatic contouring routines often have diffi-
culty detecting papillary muscles, and may include
papillary muscle volume as part of the LV cavity volume
in ED and as outside the LV cavity (i.e., in the myocardial
muscle volume) in ES. This potentially affects the derived
volumes and masses.

Consequently, we propose a semi-automated method
which leverages the user interaction in drawing ED and ES
contours by automatically propagating them to all other
time frames in a typical cardiac scan. This dual-contour
propagation technique has the potential to more accu-
rately exclude papillary muscles from the LV wall than sin-
gle-contour propagation techniques or fully automated
techniques. The proposed dual-contour propagation tech-
nique will not require additional work by the user,
because at most institutions contours are already rou-
tinely drawn at ED and ES to compute standard volumes,
myocardial mass, and ejection fraction. The purpose of
this study was to develop a novel semi-automated tech-
nique using dual-contour propagation to measure ven-
tricular volumes throughout the cardiac cycle, and

compare this method to manual and single-contour tech-
niques in normal volunteers and hypertensive patients.

Methods
Subjects
The study was approved by the appropriate institutional
review boards and informed consent was obtained from
all the participants. 39 normal human volunteers (NLs)
and 49 hypertensive (HTN) patients consecutively
enrolled in a study of resistant hypertension (defined as
requiring 3 or more anti-hypertensive medications to
achieve blood pressure < 140/90 mmHg) participated in
this study. All patients were in sinus rhythm at the time of
CMR.

Image Acquisition
CMR was performed on a 1.5-T scanner (CV/i, GE Health-
care, Milwaukee, WI) optimized for cardiac application.
ECG-gated, breath-hold steady state free precision tech-
nique was used to obtain standard (2, 3 and 4 Chamber,
Short Axis) views using the following parameters – slice
thickness 8 mm with no gap between short-axis slices,
field-of-view 44 × 44 cm, scan matrix 256 × 128, flip angle
45°, typical TR/TE = 3.8/1.6 ms; typical acquired temporal
resolution approximately 40 ms); data reconstructed to 20
cardiac phases.

Image Analysis
In all scans, LVED and LVES endocardial contours were
manually drawn on all short axis slices between the mitral
annulus and apex [23] with exclusion of the papillary
muscles. These contours were then automatically propa-
gated to all the other frames in the acquisition using the
dual-contour propagation algorithm described below. For
validation, LV contours were manually drawn on all time
frames in 18 randomly-selected normal scans by a Level 3
trained CMR specialist. These contours were used as a gold
standard for evaluating and validating the dual-contour
propagation algorithm.

Contour Propagation
Non-rigid registration (NRR) [24] was used to propagate
the contours manually drawn at end-diastole and end-sys-
tole to all other time frames in the acquisition. The NRR
algorithm computed a deformation field that warped a
source image to fit a template image. The deformation
field was then used to propagate contours defined on the
template image to the source image. Details of this algo-
rithm are provided in the Appendix. All algorithms were
implemented in MATLAB (The Mathworks, Natick, MA).

The dual-contour propagation scheme shown in Figure 1
was used to propagate both ED and ES contours to all
other time frames in the sequence. First, the NRR algo-
rithm was used to propagate ED contours forward in time
Page 2 of 13
(page number not for citation purposes)



Journal of Cardiovascular Magnetic Resonance 2009, 11:30 http://www.jcmr-online.com/content/11/1/30
through systole and backward in time through diastole
(white arrows in Figure 1). Next, ES contours were propa-
gated forward in time through diastole and backward in
time through systole (gray arrows in Figure 1). The con-
tours propagated from ED and ES were then combined, as
described in the Appendix, into a single set of endocardial
and epicardial contours.

Volumetric Analysis
The LV volume at each time frame was computed by sum-
ming the volumes defined by the contours in each slice.
The contour propagation procedure, however, propagated
contours in all slices that were contoured at ED, and, near
the base, the LV margin may have moved through the
image plane in systole. To address this problem, the NRR
algorithm was used in a long-axis slice to track a user-
selected point near the mitral annulus through the image

sequence. The displacement of this point was used to
determine how much each short-axis slice should be
included in the volume computation [4,25]. For example,
if the mitral annulus displaced 12 mm between ED and
the current time frame and the slice thickness was 8 mm,
the most basal slice would not be used in the volume
computation and 50% of the second-most-basal slice vol-
ume would be used in the total volume. This mitral annu-
lus tracking procedure was used to compute volumes for
all the contouring techniques discussed in this paper,
including manual contouring and automatic contour
propagation algorithms.

Once the volumes were computed in each time frame, a
VTC curve was constructed and differentiated with respect
to time. End-diastole was defined as the maximum-vol-
ume time frame, and end-systole was defined as the min-

Contour propagation strategyFigure 1
Contour propagation strategy. Manually-drawn contours at ED (top-left) and ES (2nd row and 2nd column) were propa-
gated to other time frames and combined.
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imum-volume time frame. Early diastole and late diastole
were defined as the first and second halves respectively of
the diastolic interval. The peak ejection rate (PER) was
defined as the maximum negative time derivative during
the systolic interval. The early diastolic and late diastolic
peak filling rates (ePFR and aPFR) were defined as the
maximum derivative during the early and late diastole.

Comparison Between Single and Dual-Contour 
Propagation
Most existing contour propagation techniques propagate
contours from either ED or ES time frames [8,16,20-
22,26]. Volumes computed from dual-propagated con-
tours, single-propagated contours from ED and ES using
the NRR method described above, and single-propagated
contours from ED and ES using CAAS MRV for Windows,
version 3.2 (Pie Medical Imaging, Maastricht, the Nether-
lands), software were compared to volumes computed
from manual contours on nine randomly-selected normal
studies (identified by NV1-NV9). A VTC was computed
for each type of contours for each study. To compare VTCs
computed from different types of contours, differences
were computed at each time point by subtracting the man-
ual volume from the propagated volumes.

Inter-User Variability
To assess inter-user variability in volumes computed from
propagated contours, nine normal studies (NV10-NV18)
were randomly selected. For each study, two sets of con-
tours were manually drawn at ED and ES by different
users. Each user was a Level 3 trained CMR specialist or
equivalent. Each set of ED and ES contours was propa-
gated using the dual contour technique, and VTCs and
ejection/filling rates were computed.

LV Mass Evaluation
To evaluate stability of dual-propagated contours
throughout the cardiac cycle, LV mass measurements were
computed in each time frame for studies NV10-NV18
from dual-propagated contours and compared to that
from one set of manually-drawn contours.

Comparison of PER and PFR Values in Normals and 
Hypertensives
The dual-contour propagation algorithm was used to
propagate contours to all time frames and compute VTCs
and ejection/filling rates in all 39 normals and 49 hyper-
tensives.

Statistical Analysis
Comparisons of LV volumes computed from different
propagation schemes and comparisons of LV masses com-
puted from dual-propagated and manual contours were
performed using mixed modeling via PROC MIXED (SAS
version 9.1). To account for the repeated measures within

a subject, a compound symmetry correlation structure was
assumed. In the LV volume study, confidence intervals on
the differences based on the fitted mixed model were con-
structed each at 99% level to achieve a joint confidence
level of at least 95% for this set of confidence intervals
using Bonferroni adjustment [27].

Comparisons of PER and PFR values computed from
dual-propagated and manually-drawn contours and com-
parisons of contours propagated by two different users
were performed using two-tailed paired t-tests, correlation
analysis, and Bland-Altman analysis. PER and PFR values
derived from dual-propagated contours in hypertensive
patients were compared to normals using unpaired t-tests.
In all these statistical tests, a P-value less than 5% was con-
sidered statistically significant.

Results
Comparison Between Single and Dual-Contour 
Propagation
Differences between propagated contours and manual
contours resulted in differences in VTCs. Figure 2 shows
VTCs from a normal volunteer. ED-propagated contours
with NRR resulted in volume overestimation near ES, and
ES-propagated contours with NRR produced volume
underestimation in early systole and late diastole. Dual-
propagated contours showed excellent agreement
throughout the entire cardiac cycle. Both ED and ES prop-
agated contours using CAAS MRV underestimated the vol-
umes as compared to the manually drawn, gold standard
volumes, more than NRR propagated contours through-
out the cardiac cycle; the CAAS MRV propagation method
also changes the manually-drawn ED and ES contours
slightly, so the volume difference is not zero at ED or ES
in these curves.

Table 1 shows confidence intervals of the volume differ-
ences between each propagation method and manual.
ED-propagated contours with NRR overestimate LV vol-
ume, whereas ES-propagated contours with NRR underes-
timate LV volume. In comparison, both ED-propagated
and ES-propagated contours with CAAS MRV underesti-
mate LV volume by a larger margin. However, the dual-
propagated volumes were not statistically different from
manually-contoured volumes.

The average computation time for dual-contour propaga-
tion (not including manually contouring the ED and ES
contours) was 7.3 minutes for a single study on a 2.6 GHz
dual-core personal computer with 4 GB of RAM. Auto-
mated contour propagation using CAAS MRV required
less than 1 minute per study. Manual contouring of all
slices and phases (typically 12 to 14 short axis slices × 20
cardiac phases) required approximately 4 hours per study.
Page 4 of 13
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Validation of Functional Parameters
Figure 3 shows the VTCs in normal volunteers derived
from the manually-drawn contours and dual-propagated
contours. The manual and dual-propagated VTCs were
quite close to each other in all nine studies – particularly
during systole and early diastole. This similarity between
manual and propagated VTCs means that the contours
manually drawn at ED and ES were consistently propa-
gated to the other time frames in the cine sequence.

No statistically-significant differences were found
between PER, ePFR and aPFR rates computed from manu-
ally-drawn contours and dual-propagated contours (Table
2). The correlation coefficients between the PER, ePFR and
aPFR values were 0.92, 0.95 and 0.96 respectively (all P <
0.001). Figure 4 shows scatter and Bland-Altman plots
comparing the manual and dual-propagated measure-
ments of ejection and filling rates.

Inter-User Variability
No significant difference was found between PER, ePFR
and aPFR values computed from contours propagated
with ED and ES contours drawn by two different users
(User1 and User2). The differences (User2-User1)

between PER, ePFR and aPFR values were 0.07 ± 0.16
EDV/s (P = 0.24), -0.03 ± 0.05 EDV/s (P = 0.11) and -0.01
± 0.05 EDV/s (P = 0.50) respectively. The correlation coef-
ficients for the PER, ePFR and aPFR values were 0.95 (P <
0.0001), 0.99 (P < 0.0001) and 0.99 (P < 0.0001) respec-
tively. Figure 5 shows scatter and Bland-Altman plots
comparing User1 and User2 measurements of PER, ePFR
and aPFR.

LV Mass Evaluation
No significant difference was found between normalized
LV masses (LV mass/ED LV mass) computed from dual-
propagated contours and manual contours. The normal-
ized LV mass difference (propagated-manual) was -0.015
± 0.0077 (P = 0.08). Figure 6 shows the mean normalized
LV mass throughout the cardiac cycle averaged over stud-
ies NV10-NV18. The normalized LV mass computed from
dual-propagated contours was close to that from the man-
ual contours and both remain stable throughout the car-
diac cycle, indicating that the propagated contours were as
stable as the manual contours.

LV-volume-versus-time curves for a normal human volunteerFigure 2
LV-volume-versus-time curves for a normal human volunteer. They were computed from different sets of contours: 
manually-drawn contours in each time frame (red), contours propagated from the manual ED contours using NRR (green), 
contours propagated from the manual ES contours using NRR (cyan), contours propagated from both ED and ES contours 
using NRR (blue), contours propagated from manual ED contours using CAAS MRV (black), and contours propagated from 
manual ES contours using CAAS MRV (magenta).
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Table 1: Differences between LV volumes (expressed as fraction of EDV) computed from propagated contours and manually-drawn 
contours.

Volume Difference (EDV)

Mean ± SE 99% Confidence Interval P

Dual NRR – Manual -0.19 ± 0.56 -1.74 1.35 0.7316
ED NRR – Manual 1.61 ± 0.56 0.08 3.14 0.0069
ES NRR – Manual -3.50 ± 0.56 -5.03 -1.97 <0.0001
ED CAAS – Manual -6.54 ± 0.55 -8.06 -5.02 <0.0001
ES CAAS – Manual -11.05 ± 0.55 -12.57 -9.54 <0.0001

SE = standard error.

LV-volume-versus-time curves for nine normal human volunteersFigure 3
LV-volume-versus-time curves for nine normal human volunteers. They were computed from two different sets of 
contours: manually-drawn contours in each time frame (red) and dual-propagated contours (blue).
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Peak Ejection and Filling Rates in HTN
Figure 7 shows typical VTCs for a normal volunteer and a
hypertensive patient measured from dual-propagated
contours. Peak ejection rates are similar in both curves,
but the early diastolic filling rate is lower in the hyperten-
sive patient than in the normal while the late filling rate is
higher.

Figure 8 shows the mean peak ejection and filling rates
measured from dual-propagated contours in all 39 nor-
mals and 49 patients with hypertension. In hypertensives,
PER was not different from normal (3.4 ± 0.1 vs. 3.2 ± 0.1
EDV/sec, P = NS). Diastolic filling rates, however, were
altered compared to normals, demonstrating diastolic
dysfunction in hypertension that is common in this
patient group: ePFR was lower than normal (2.6 ± 0.1 vs.
3.2 ± 0.1 EDV/sec, P < 0.0001), but aPFR was higher than
normal (2.4 ± 0.1 vs. 1.6 ± 0.1 EDV/sec, P < 0.0001).

Discussion
In this paper, we described a novel dual-contour propaga-
tion technique for measuring volume-time curves (VTCs),
validated it against manually drawn contours, and dem-
onstrated its utility in a clinically-relevant patient popula-
tion. This method requires nothing more than standard
short-axis and long-axis CMR acquisitions and routinely
drawn ED and ES contours. We show that the dual-prop-
agated contours can be used to accurately measure peak
ejection and filling rates compared to the reference stand-
ard of manually-drawn contours. The dual-contour prop-
agation technique provides a fast, practical means of
measuring volume-based indices of systolic and diastolic
ventricular function from routine clinical CMR.

Several techniques have been proposed for propagating
contours in CMR [16-22] and other modalities [28-33],
but these techniques only propagate contours from a sin-
gle time frame. While propagating contours from only
one time frame requires less user interaction, we found
that the resulting volumes are less accurate compared to
dual propagation. If contours are only defined at ED,
propagated contours with NRR may not be able to sepa-

rate papillary muscles from the LV wall at ES resulting in
the volume differences at ES (Figure 2). Propagating only
ES contours with NRR may solve this problem, but vol-
ume differences occur in late diastole as demonstrated in
Figure 2.

van Guens, et al. [15] proposed an automated method for
drawing contours at ED and ES. The required user input
was minimal – only four manually-drawn epicardial con-
tours on two and four-chamber views at ED and ES – but
volumes were only validated at ED and ES. In addition,
for registration purposes, this method requires that both
long axis and multiple short-axis acquisitions be per-
formed with reproducible breath-hold positions, which
can sometimes be difficult to obtain under clinical condi-
tions. The contour propagation method proposed in this
paper, however, does not have this limitation since con-
tours are propagated in each slice independently.

Investigators have previously described use of volume
time indices for measuring systolic and diastolic function
[34,35]. CMR allows measurement of ventricular volumes
throughout the cardiac cycle independent of geometric
assumptions. The excellent spatial resolution and image
contrast make it potentially the most accurate clinically-
applicable non-invasive technique for assessment of
systolic and diastolic function. To provide an illustration
of the utility of our propagation method in clinical assess-
ment of patients with risk factors for heart failure, the
dual-contour propagation technique was employed to
assess the physiology of LV systolic and diastolic function
in 49 patients consecutively enrolled in a study of resistant
hypertension. The images in this study contain the normal
range of image quality and presence of artifacts encoun-
tered under routine clinical conditions. The concentrically
hypertrophied LV in the HTN patients had a normal LV
ejection fraction and LV peak ejection rate; however, early
peak filling was decreased and late filling rate was
increased, consistent with diastolic dysfunction.

The inter-user and intra-user variability in the propagated
contours depend on the inter-user and intra-user variabil-
ity of the semi-automatically-drawn contours at ED and
ES. This variability has been studied in [15,36,37]. In our
study, no significant difference was found between PER,
ePFR and aPFR values computed from contours propa-
gated from ED and ES contours drawn by two different
users.

A limitation of contour propagation algorithms in general
is that any errors in the seed contours get propagated to all
other time frames. Consequently, it is especially impor-
tant to ensure accurate seed contours before propagation.
Also in this paper, papillary muscle volume was consid-
ered part of the LV blood volume. Since the papillary mus-

Table 2: Differences between peak ejection and filling rates 
computed from manually-drawn and dual-propagated contours.

Rate Difference (EDV/s)

Mean ± SE 95% Confidence Interval P

PER -0.12 ± 0.08 -0.29 0.06 0.16
ePFR -0.07 ± 0.07 -0.23 0.08 0.31
aPFR 0.06 ± 0.03 -0.02 0.13 0.11

Differences are dual-propagated minus manual.
PER: peak ejection rate; ePFR: early diastolic filling rate; aPFR: late 
diastolic filling rate; SE: standard error.
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Scatter and Bland-Altman plots of LV ejection and filling rates computed from manual contours (Manual) and dual-propagated contours (Prop)Figure 4
Scatter and Bland-Altman plots of LV ejection and filling rates computed from manual contours (Manual) and 
dual-propagated contours (Prop). The plotted rates include peak ejection rate (PER) (a, b), early diastolic filling rate 
(ePFR) (c, d), and late diastolic filling rate (aPFR) (e, f) values in end-diastolic volumes (EDV)/sec. The dashed lines in Bland-Alt-
man plots represent the mean and mean ± two standard deviations of the difference between Prop and Manual rates.
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Scatter and Bland-Altman plots of LV PER (a,b), ePFR (c,d), and aPFR (e,f) values in EDV/sec computed from contours manually drawn at ED and ES by two different users (User1 and User2) and propagatedFigure 5
Scatter and Bland-Altman plots of LV PER (a,b), ePFR (c,d), and aPFR (e,f) values in EDV/sec computed from 
contours manually drawn at ED and ES by two different users (User1 and User2) and propagated.
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cle volume is relatively constant throughout the cardiac
cycle, subtracting the papillary muscle volume would
reduce the blood volume by the same amount in all
phases and would not significantly affect filling or ejec-
tion rates, which are the key parameters determined in
this work. Although not evaluated in the present study, we
believe that another potential advantage of the dual-con-

tour propagation approach is that defining contours at
two time points provides increased robustness to imaging
artifacts.

In conclusion, the dual-contour propagation technique
provides a fast, accurate and practical means of measuring
volume-based indices of systolic and diastolic ventricular
function from routine clinical CMR.
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Appendix
Non-Rigid Registration
First, a square region of interest (ROI) was defined that
enclosed epicardial contours in the template image. Since
the NRR was applied sequentially starting from either ED
or ES, an epicardial contour (either manually-drawn or
propagated) was always available in the template image.

Next, a two-dimensional displacement field was defined
on the template ROI. The deformation field was parame-
terized by a tensor product of quadratic, uniformly-spaced
B-splines:

where pis a point in the template ROI, β(p) is a B-spline
basis function, μi is a control point, C is the number of
control points and vi is the knot location associated with
the i-th control point. Eight control points were used in
each dimension. The B-spline order and number of con-
trol points were determined empirically.

The B-spline control points, μ, were computed to mini-
mize the sum of squared differences between the pixel

m p p v( ; )μμ μμ ββ= −( )
=
∑ i i

i

C

1

Mean LV mass (normalized to ED LV mass) at different phases of the cardiac cycle computed from manual contours and dual-propagated contours averaged over nine normal studiesFigure 6
Mean LV mass (normalized to ED LV mass) at differ-
ent phases of the cardiac cycle computed from man-
ual contours and dual-propagated contours averaged 
over nine normal studies.
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intensities in the template image, It, and the source image,
Is:

where Ω is the set of pixels in the template ROI.

The cost function in Eq. (1) was optimized using a multi-
resolution strategy to speed up computation and avoid
local minima in the cost function. First, the template ROI
was resampled from 64 × 64 to 16 × 16 pixels and the
number of control points was reduced to four in each

dimension. The reduced resolution control points were
then computed using Levenberg optimization algorithm
with an analytical gradient and Hessian. This process was
then repeated using template ROI resampled from 64 × 64
to 32 × 32 pixels. The number of control points was kept
at four in each dimension, and the result of the coarser res-
olution optimization was used as the starting point for the
optimization. Next, the displacement field was interpo-
lated to eight control points in each dimension, and Eq.
(1) was optimized on the full-resolution 64 × 64 template
ROI. The source image was resampled accordingly in each
multi-resolution layer to match the resolution of the tem-
plate ROI. The result was a spatially continuous mapping

J I It k s k k( ) ;μμ μμ= ( ) − + ( )( )⎡⎣ ⎤⎦
∈Ω

∑ p p m p
pk

2

(1)

Peak LV ejection rate, early diastolic filling rate, and late diastolic filling rate in EDV/s in normal volunteers (NL) and patients with primary hypertension (HTN)Figure 8
Peak LV ejection rate, early diastolic filling rate, and late diastolic filling rate in EDV/s in normal volunteers 
(NL) and patients with primary hypertension (HTN). * P < 0.05 vs. normal.
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Table 3: Control points for generating ED-propagated contour weights.

% Systolic Interval ED – Propagated Contour Weight % Diastolic Interval ED-Propagated
Contour Weight

0.00 1.00 0.00 0.00
16.67 0.90 7.69 0.10
33.33 0.75 15.38 0.25
50.00 0.50 23.08 0.40
66.67 0.25 30.77 0.50
83.33 0.10 38.46 0.65
100.00 0.00 46.15 0.75

53.85 0.85
61.54 0.90
69.23 0.95
76.92 1.00
84.62 1.00
92.31 1.00
100.00 1.00

ES-propagated contour weights are one minus the ED-propagated weights.
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of points from the template ROI to the source image.
Finally, each contour point in the template ROI was
mapped to the source image using the final displacement
field.

Combining Contours Propagated From ED and ES
As described above, the NRR was used to propagate con-
tours from both ED and ES to all other time frames in a
sequence. These propagations resulted in two contours for
each time frame (except at ED and ES). The two contours
were combined into a single B-spline contour using a
weighted-least-squares fit. The ED-propagated contour
weight for a given time was computed using cubic-spline
interpolation from the empirically-determined control
points in Table 3. The end-systolic ES-propagated contour
weight is one minus the ED contour weight. The ED-prop-
agated and ES-propagated weights at a given frame are
based on their distances from the ED and ES frames. For
example, as the distance of a frame from ED increases, its
ED-propagated weights decreases and its ES-propagated
weights increases.
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