# Journal of Cardiovascular Magnetic Resonance

### Poster presentation

## Influence of left ventricular hypertrophy and geometry on diagnostic accuracy of wall motion and perfusion analysis during dobutamine stress magnetic resonance

Rolf Gebker\*, Jesus G Mirelis, Cosima Jahnke, Thomas Hucko, Robert Manka, Ashraf Haan, Bernhard Schnackenburg, Eckart Fleck and Ingo Paetsch

Address: German Heart Institute, Berlin, Germany \* Corresponding author

from 13th Annual SCMR Scientific Sessions Phoenix, AZ, USA. 21-24 January 2010

Published: 21 January 2010 Journal of Cardiovascular Magnetic Resonance 2010, 12(Suppl 1):P213 doi:10.1186/1532-429X-12-S1-P213

This abstract is available from: http://jcmr-online.com/content/12/S1/P213

© 2010 Gebker et al; licensee BioMed Central Ltd.

#### Introduction

Despite the consistently high endocardial border visualization achieved with cine MR imaging, visual identification of developing wall motion abnormalities may be challenging in hypertrophied hearts.

#### Purpose

To examine the influence of left ventricular hypertrophy and geometry on the diagnostic accuracy of wall motion and perfusion analysis during high dose dobutamine stress magnetic resonance (DSMR).

#### Methods

Combined wall motion (DSMR) and perfusion imaging (DSMRP) was performed in a single session in 156 patients scheduled for invasive coronary angiography. Patients were classified into four categories based on LV mass (normal  $\leq 81$  g/m<sup>2</sup> in men,  $\leq 62$  g/m<sup>2</sup> in women) and relative wall thickness (RWT, normal <0.45): normal geometry, concentric remodeling, concentric hypertrophy and eccentric hypertrophy. Wall motion and perfusion images were interpreted sequentially, blinded to other data. Significant coronary artery disease (CAD) was defined as  $\geq 70\%$  stenosis.

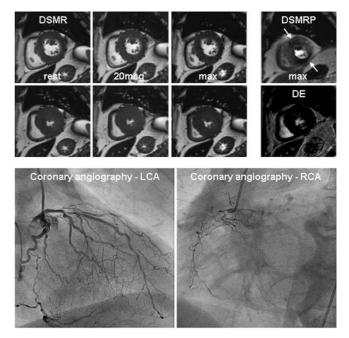



Figure I

Page 1 of 2 (page number not for citation purposes)



## **Open Access**

#### Results

The accuracy of DSMR in patients with concentric hypertrophy (71%) or concentric remodeling (73%) was lower than in patients with normal geometry (83%, P < 0.05) or eccentric hypertrophy (90%, P < 0.05). While accuracy of DSMRP was higher compared to DSMR in patients with concentric hypertrophy (84% vs. 71%, P < 0.05) and concentric remodeling (86% vs. 73%, P < 0.05), accuracy of DSMR was superior compared to DSMRP (90% vs. 85%, P < 0.05) in patients with eccentric hypertrophy, Figure 1.

#### Conclusion

The accuracy of DSMR is influenced by LV mass and geometry. In patients with concentric remodeling and concentric hypertrophy additional first-pass perfusion imaging during high dose dobutamine stress improves the diagnostic accuracy for the detection of CAD.

