Assessment of in vivo metabolism in failing hearts using hyperpolarised 13C magnetic resonance

Marie A Schroeder¹, Angus Lau¹,², Albert Chen¹, Kim Connelly¹,³, Jennifer Barry¹, Kieran Clarke⁴, Graham Wright¹,², Charles Cunningham¹,²

From 2011 SCMR/Euro CMR Joint Scientific Sessions
Nice, France. 3-6 February 2011

Introduction
Increasingly, abnormal metabolic substrate utilisation is considered a cause of heart failure (HF). Hyperpolarised ¹³C MR, a technique in which the fate of ¹³C-labelled metabolites can be followed in vivo using MR imaging or spectroscopy, has enabled non-invasive assessment of cardiac substrate utilisation.

Purpose
The aim of this study was to monitor carbohydrate metabolism alongside cardiac structure and function, throughout HF progression.

Methods
Dilated cardiomyopathy (DCM) was induced in pigs (n = 4) by rapid ventricular pacing at 188 bpm for 4-5 weeks. Pigs were examined at baseline and at weekly time points throughout DCM progression. At each time point, cine MRI was used to assess cardiac structure and function, 0.05 mmol/kg hyperpolarised ¹³C₂-pyruvate was administered intravenously and MRS was used to assess Krebs cycle-mediated ¹³C-glutamate production, and hyperpolarised ¹³C₁-pyruvate was administered to assess H¹³CO₃⁻ production from pyruvate dehydrogenase (PDH), and thus relative carbohydrate oxidation. A new cardiac and

Figure 1 A) Representative short-axis ¹³C images of the healthy pig heart, acquired with a surface coil. B) Comparison of parameters of structural and metabolic remodeling in the pig heart throughout the progression of DCM. *p<0.05.
respiratory-gated 13C MRI sequence was used to image 13C$_1$-pyruvate and H13CO$_3$$. The chemical shift-specific pulse sequence used allowed temporally resolved imaging of 13C$_1$-pyruvate and H13CO$_3$ with 9 mm in-plane spatial resolution in multiple slices (two in these studies), all within a 23 s scan. Pigs were sacrificed after presentation of clinical symptoms or >25% increase in end diastolic volume (EDV).

Results
At baseline, pigs had an EDV of 62 ± 5 ml. The maximum 13C-glutamate/13C$_2$-pyruvate ratio was 4.9 ± 1.2% (Fig 1A), whereas the mean H13CO$_3$/13C$_1$-pyruvate ratio across the anterior myocardium was 2.0 ± 0.3% (Fig 1B). After 1 week of pacing, the 13C-glutamate/13C$_2$-pyruvate decreased significantly to 2.1 ± 0.8%, and was maintained at this level throughout DCM development. EDV increased linearly with pacing duration, and after 2-3 weeks of pacing was significantly elevated to 84 ± 12 ml. After 4-5 weeks of pacing (at the final time point), the ejection fraction (EF) was decreased by 40% compared with the baseline value, and the H13CO$_3$/13C$_1$-pyruvate was decreased to 0.8±0.2%.

Conclusions
In conclusion, metabolism of 13C$_2$-pyruvate to 13C-glutamate was reduced by 59% at an early stage in DCM, with no change to PDH flux. Reduced 13C-glutamate relative to H13CO$_3$ production could be an early marker of disease. Carbohydrate oxidation via PDH was maintained until end-stage DCM, at which point PDH flux was reduced by 62%. With further development, metabolic imaging using hyperpolarised 13C MR may similarly characterize HF progression in patients.

Author details
1Sunnybrook Research Institute, Toronto, ON, Canada. 2Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada. 3Enform Research Centre of the Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, ON, Canada. 4University of Oxford, Oxford, UK.

Published: 2 February 2011