Arterial spin labeled MRI detects clinically relevant increases in myocardial blood flow with vasodilatation

Zungho Zun\(^1\)*, Padmini Varadarajan\(^2\), Ramdas G Pai\(^2\), Eric C Wong\(^3\), Krishna S Nayak\(^1\)

From 2011 SCMR/Euro CMR Joint Scientific Sessions
Nice, France. 3-6 February 2011

Objective
This study sought to demonstrate the potential for arterial spin labeling (ASL) to differentiate normal and ischemic myocardial segments based on increase in myocardial blood flow (MBF) with vasodilatation.

Background
Myocardial ASL is a promising technique for the assessment of MBF because of the absence of contrast agents. Patients with end-stage renal disease cannot tolerate contrast agent, and therefore stand to potential benefit from myocardial ASL. MBF in healthy myocardium is known to increase by 4 times during vasodilator-induced stress, compared to at rest [1].

Methods
Twenty nine patients were recruited from those scheduled for routine cardiac MR (CMR) exams. All MRI experiments were performed on a GE Signa 3T scanner. Myocardial ASL measurements were obtained from a single mid short-axis slice, using flow-sensitive alternating inversion recovery (FAIR) tagging and balanced steady-state free precession (SSFP) imaging [2]. Rest-stress myocardial ASL scans were incorporated in CMR exam including first-pass imaging during adenosine infusion of 0.14 mg/kg/min (Figure 1). Based on CMR results, patients who were suspected to have severe ischemic heart disease also underwent X-ray angiography.

Results
Among 29 patients, fifteen patients were found to be normal based on having no visible perfusion defect on first-pass MRI and no significant stenosis on X-ray angiogram. Ten patients had both perfusion defects and stenosis. Four remaining patients showed perfusion defects but no stenosis. Table 1 summarizes the perfusion analysis performed in both whole myocardium and myocardial segments after excluding subjects with signal-to-physiological-noise ratio<2.0 [2]. The normal segments included all six segments [3] of the whole myocardium in normal patients and ischemic segments included the most ischemic segments in the patients with stenosis confirmed by X-ray angiography. MBF increase with adenosine in the global and segmental myocardium in normal patients were both statistically significant with p<0.0001 while MBF increase with...
adenosine in ischemic segments were not statistically significant with \(p = 0.1032 \), based on paired t-test. Difference in perfusion reserve \((\frac{\text{MBF}_{\text{stress}}}{\text{MBF}_{\text{rest}}}) \) between normal and ischemic segments was statistically significant with \(p = 0.0296 \), based on unpaired t-test.

Conclusion

This study has demonstrated that myocardial ASL is able to capture adenosine-induced MBF increase in normal myocardium while detecting insignificant increase in ischemic myocardium. This suggests that myocardial ASL with vasodilation has a potential to diagnose angiographically significant heart disease.

Table 1 MBF at rest and during stress (ml/g/min) and perfusion reserve

<table>
<thead>
<tr>
<th>Subject</th>
<th>Normal whole myocardium</th>
<th>Normal myocardial segments</th>
<th>Ischemic myocardial segments</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>12</td>
<td>66</td>
<td>11</td>
</tr>
<tr>
<td>Condition</td>
<td>Rest</td>
<td>Stress</td>
<td>Rest</td>
</tr>
<tr>
<td>MBF</td>
<td>1.19±0.46</td>
<td>3.99±1.39</td>
<td>1.20±0.88</td>
</tr>
<tr>
<td>Reserve</td>
<td>4.21±3.44</td>
<td>2.87±2.10</td>
<td>1.48±0.46</td>
</tr>
</tbody>
</table>

References

Published: 2 February 2011