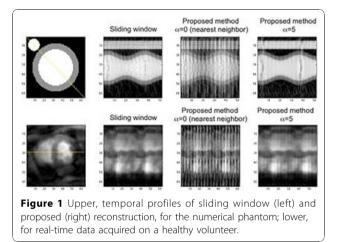


POSTER PRESENTATION

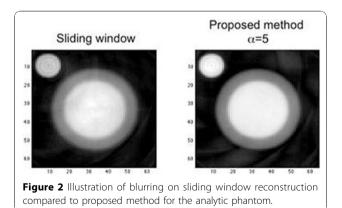
Real time cardiac MRI: spline-based spatiotemporal reconstruction of spiral data

Bénédicte MA Delattre^{1*}, Jean-Noël Hyacinthe¹, Gunnar Krüger², Jean-Paul Vallée¹, Dimitri Van De Ville³

From 2011 SCMR/Euro CMR Joint Scientific Sessions Nice, France. 3-6 February 2011


We propose a novel reconstruction method using a spline-based image model in both spatial and temporal dimensions that takes the advantage of the precise timing of each k-space sample to reconstruct image series at high time frames, independently from the original sampling rate of data and avoiding the temporal blurring that can affect other reconstruction methods like sliding window.

While MRI techniques have undergone considerable improvements since the early days, performing real time imaging is still challenging today. Despite the various original methods proposed until very recently, the usual way to reconstruct data at a higher frame rate is the sliding window technique that brings along intrinsic temporal blurring


The proposed image model is the following: $\rho(x,y,t) = \sum_{n_1,n_2,n_3} c_{n_1,n_2,n_3} \beta^1 (x-n_1) \beta^1 (y-n_2) \beta^{\alpha} (t-n_3)$ where β^{α} is a spline function (α the spline degree). The spline model has the main advantage of allowing image reconstruction at arbitrary time points. In order to recover the Nyquist criteria, more data samples are included in the reconstruction by increasing the spline degree but they are weighted with the temporal information (zeroth degree neglects the temporal information of the samples as in nearest neighbor interpolation). The model was validated on an analytic phantom and then applied to real time data acquired from a healthy volunteer on a 3T scanner using a spiral sequence.

Results obtained on the numerical phantom demonstrated that the time resolution of the reconstructed data could be improved by a factor of 3 when using a high enough spline degree, without sacrifying the SNR (11.5 dB for sliding window and 10.3 dB for the proposed method with α =5, whereas only 5.78 dB for α =0) (figure 1). Moreover, the edge strength of the

¹University of Geneva, Geneva University Hospital, Geneva, Switzerland Full list of author information is available at the end of the article

endocardium was recovered for the proposed method (edge strength was 10.4e-2a.u. for sliding window and 13.9e-2a.u. for our method with α =5) (figure 2). The temporal profile obtained on real data with 5th degree splines was comparable to the one obtained with the classical sliding window. Note that the number of spline coefficients (degrees of freedom of the model) remains fixed.

© 2011 Delattre et al; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. This novel approach is able to increase up to 3 times the temporal resolution of reconstructed images without introducing temporal blurring.

Author details

¹University of Geneva, Geneva University Hospital, Geneva, Switzerland. ²Siemens Medical Solutions, Centre d'Imagerie Biomédicale (CIBM), Lausanne, Switzerland. ³Ecole Polytechnique Fédérale de Lausanne (EPFL), University of Geneva, Lausanne and Geneva, Switzerland.

Published: 2 February 2011

doi:10.1186/1532-429X-13-S1-P141 Cite this article as: Delattre *et al.*: Real time cardiac MRI: spline-based spatio-temporal reconstruction of spiral data. *Journal of Cardiovascular Magnetic Resonance* 2011 13(Suppl 1):P141.

Submit your next manuscript to BioMed Central and take full advantage of:

BioMed Central

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

Submit your manuscript at www.biomedcentral.com/submit