ORAL PRESENTATION

Open Access

Gray-zone late gadolinium enhancement greatly enriches the prediction of ventricular arrhythmia; a cardiovascular MRI study

Asghar Fakhri^{*}, Harish Manyam, Mohammad A Rana, Sourabh Prabhakar, Ronald B Williams, William Belden, John Chenarides, Kenneth Judson, Christopher Bonnet, Robert W Biederman

From 15th Annual SCMR Scientific Sessions Orlando, FL, USA. 2-5 February 2012

Summary

Gray-zone imaging for VT/VF is markedly predictive for both ischmic and non-ischemic patients as related to the incidence of post-implantation shock delivery.

Background

Sudden cardiac death in patients is predominantly caused by ventricular tachycardia (VT)/ventricular fibrillation (VF). Patients who have a low left ventricular ejection fraction (LVEF) and inducible VT during electrophysiologic study (EPS) are at risk of sudden death and may benefit from an implantable cardioverter-defibrillator (ICD) as do patients with low LVEF. However, LVEF's primacy in predicted SCD has been questioned. Recently, cardiac MRI (CMR) has shown that a determination of myocardial core scar via late gadolinium enhancement (LGE) may predict VT/VF with greater precision than LVEF presumably due its ability to define likely sources of macro-rentry by delinieating the 'grayzone' myocardium.

We hypothesize that LGE depiction of gray-zone scar is more predictive of VT/VF than LGE core scar assessment.

Methods

A consecutive, retrospective chart review was performed of patients with both a CMR exam for LGE and with post-CMR ICD implantation from 2006-2010 within 30 days. Demographic and clinical events were collected from patient charts and ICD interrogation. Standard LGE (>2SD) and gray-zone (LGE;2-3SD) was manually

determined and related as a percent of LV mass to arrhythmic events and ICD therapy.

Results

A total of 45 subjects met our inclusion criteria. These included patients with both ischemic (n=28) and non-ischemic (n=17) cardiomyopathy. In this population, LVEF was not predictive of ICD therapy in univariate or multivariate analysis (p=NS). In contrast, LGE strongly predicted future ICD therapy (combined anti-tachycardia pacing and defibrillation) in the multivariate logistic model (p=0.02), as well as defibrillation alone (p=0.03). LGE gray zone showed a similar trend for defibrillation but did not reach statistical significance (p=0.06).

Conclusions

LGE via CMR is markedly predictive for future ICD therapy delivery in patients with non-ischemic and ischemic cardiomyopathy alike. This marker may prove to be an important stratification variable that will greatly enhance current approaches that have traditionally relied soley on LVEF.

Funding

Internal.

Published: 1 February 2012

doi:10.1186/1532-429X-14-S1-O17

Cite this article as: Fakhri et al.: Gray-zone late gadolinium enhancement greatly enriches the prediction of ventricular arrhythmia; a cardiovascular MRI study. Journal of Cardiovascular Magnetic Resonance 2012 14(Suppl 1):017.

Allegheny General Hospital, Pittsburgh, USA

