

POSTER PRESENTATION

Regional myocardial contractility in Thalassemia Major by magnetic resonance tagging

Antonella Meloni^{1*}, Chiara Tudisca², Emanuele Grassedonio², Cristina Paci³, Alessandra Quota⁴, Petra Keilberg¹, Vincenzo Positano¹, Massimo Lombardi¹, Massimo Midiri², Alessia Pepe¹

From 17th Annual SCMR Scientific Sessions New Orleans, LA, USA. 16-19 January 2014

Background

Magnetic resonance (MR) tagging analyzed by dedicated tracking algorithms allows very precise measurements of myocardial motion and characterization of regional myocardial function. No extensive data are available in literature. Our aim was to quantitatively assess for the regional myocardial contractility in thalassemia major (TM) patients and to correlate it with heart iron overload and global biventricular function.

Methods

Seventy-four TM patients (46 F; 31.8 ± 8.5 yrs) enrolled in the MIOT (Myocardial Iron Overload in Thalassemia) network underwent MR (1.5T). Three short-axis (basal, medial and apical) tagged MR images were analyzed offline using harmonic phase (HARP) methods (Diagnosoft software) and the circumferential shortening (Ecc) was evaluated for all the 16 myocardial segments. Four main circumferential regions (anterior, septal, inferior, and lateral) were defined. The same axes were acquired by a T2* GRE multiecho technique to assess myocardial iron overload (MIO). Biventricular function parameters were quantitatively evaluated by cine images.

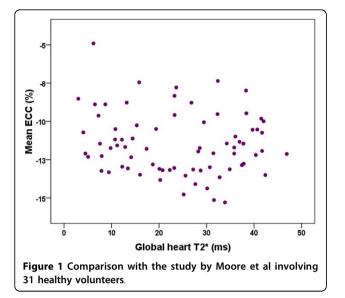
Results

Segmental ECC values ranged from -9.66 \pm 4.17% (basal anteroseptal segment) to 13.36 \pm 4.57% (mid-anterior segment). No significant circumferential variability was de-tected. Compared with previous studied healthy subjects, TM patients showed strain values sig-nificantly lower in all the circumferential regions at each level (mean difference from 4% to 13%; p < 0.001 for all the

¹CMR Unit, Fondazione G. Monasterio CNR-Regione Toscana and Institute of Clinical Physiology, Pisa, Italy

Full list of author information is available at the end of the article

comparisons) (see Table 1). Segmental Ecc values were not significantly correlated with the correspondent T2* values and no correlation was detected considering the global values, averaged over all segmental values (see Figure 1). Three groups identified on the basis of cardiac iron distribution: no MIO, heterogenous MIO and homogeneous MIO. The global ECC was comparable among the three groups (-11.56 \pm 1.60% vs -11.70 \pm 2.43% vs -11.14 \pm 1.95%; P = 0.602). Global ECC values were not significantly correlated with age and were comparable between the sexes. Circumferential shortening was not associated to left ventricular (LV) volumes and ejection fraction (with a p > 0.5 in all the comparisons).


Conclusions

TM patients showed a significantly lower cardiac contractility compared with healthy subjects, but this altered contractility was not related to cardiac iron, volumes and function.

Table 1

		Anterior	Septal	Inferior	Lateral
Basal	Healthy	-0.20 ± 0.03	-0.17 ± 0.03	-0.16 ± 0.03	-0.21 ± 0.03
	TM	-0.11 ± 0.04	-0.10 ± 0.03	-0.12 ± 0.04	-0.11 ± 0.03
		Diff = 0.09 p < 0.001	Diff = 0.07 p < 0.001	Diff = 0.04 p < 0.001	Diff = 0.10 p < 0.001
Medium	Healthy	-0.23 ± 0.04	-0.16 ± 0.03	-0.16 ± 0.05	-0.22 ± 0.03
	TM	-0.14 ± 0.05	-0.12 ± 0.03	-0.11 ± 0.04	-0.12 ± 0.03
		Diff = 0.09 p < 0.001	Diff = 0.04 p < 0.001	Diff = 0.05 p < 0.001	Diff = 0.10 p < 0.001
Apical	Healthy	-0.24 ± 0.06	-0.18 ± 0.03	-0.23 ± 0.04	-0.24 ± 0.04
	TM	-0.12 ± 0.04	-0.13 ± 0.04	-0.12 ± 0.05	-0.11 ± 0.04
		Diff = 0.12 p < 0.001	Diff = 0.05 p < 0.001	Diff = 0.11 p < 0.001	Diff = 0.13 p < 0.001

© 2014 Meloni et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http:// creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Funding

The MIOT project receives "no-profit support" from industrial sponsorships (Chiesi and ApoPharma Inc). This study was also supported by: "Ministero della Salute, fondi ex art. 12 D.Lgs. 502/92 e s.m.i., ricerca.

Authors' details

¹CMR Unit, Fondazione G. Monasterio CNR-Regione Toscana and Institute of Clinical Physiology, Pisa, Italy. ²Istituto di Radiologia, Policlinico "Paolo Giaccone", Palermo, Italy. ³Centro Trasfusionale, Ospedale S Maria alla Gruccia, Montevarchi, Italy. ⁴Serv. Talassemia, Osp. "V. Emanuele III", Gela, Italy.

Published: 16 January 2014

doi:10.1186/1532-429X-16-S1-P244 Cite this article as: Meloni *et al.*: Regional myocardial contractility in Thalassemia Major by magnetic resonance tagging. *Journal of Cardiovascular Magnetic Resonance* 2014 16(Suppl 1):P244.

Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

Submit your manuscript at www.biomedcentral.com/submit

BioMed Central