

POSTER PRESENTATION

Open Access

Radial cardiac T_2 mapping with alternating T_2 preparation intrinsically introduces motion correction

Hélène Feliciano^{1,2*}, Matthias Stuber^{1,2}, Ruud B van Heeswijk^{1,2}

From 17th Annual SCMR Scientific Sessions New Orleans, LA, USA. 16-19 January 2014

Background

 T_2 mapping through variation of the T_2 preparation (T_2 Prep) duration has been increasingly used to robustly detect and quantify cardiac edema (Giri et al., JCardiov-MagnReson2009). However, if images with incremental T_2 Prep duration are acquired in a sequential fashion, irregular breathing patterns and heart rates may adversely affect the quality of the T_2 maps due to misalignment of the source images. A logical alternative is then to acquire all images in an alternating manner (Figure 1ab), where the T_2 Prep duration changes cyclically from one heartbeat to the next. Combined with a radial signal readout, this may minimize the vulnerability to respiratory or RR variability. We therefore simulated, implemented and tested the utility of an alternating magnetization preparation approach to T_2 mapping.

Methods

A navigator-gated ECG-triggered radial gradient-recalled-echo pulse sequence (20 lines per heartbeat, trigger every 3 heartbeats) was implemented to obtain source images for the T_2 maps (van Heeswijk et al., JACCCardiovImag2012), with the possibility to apply the T_2 Prep durations of 60/30/0 ms in both an alternating and sequential manner. Bloch equation simulations were performed in order to estimate the fitting residual due to T_1 relaxation (van Heeswijk et al., JACCCardiovImag2012) as well as the accuracy over a range of heart rates. The sequences were validated at 3T (12-channel

surface coil array, on a Magnetom Trio, Siemens, Erlangen, Germany) in agar-Ni Cl_2 phantoms by comparing the resulting T_2 maps to gold-standard spin-echo (SE) T_2 measurements. A mid-ventricular short-axis T_2 map was then acquired with both pulse sequences in 7 healthy adult volunteers. The myocardial surface area was measured in the T_2 maps, while a Student's t-test was applied to detect differences in T_2 values and surface area.

Results

The alternating sequence was as robust to heart rate variation as its sequential counterpart (Figure 1c), while its accuracy was confirmed in the phantoms ($T_2 = 45.4 \pm 0.7$ ms for the alternating method, vs 45.3 ± 0.7 ms for the sequential method and 45.1 ± 0.7 ms for the goldstandard). The myocardial surface area was increased in the alternated T_2 maps of the volunteers (128 ± 24 cm² vs. 111 ± 20 cm², p = 0.04) (Figure 2), while the average midventricular T_2 value slightly differed between the alternated and sequential methods ($T_2 = 37.6 \pm 6.6$ ms alternated vs. 40.4 ± 6.1 ms sequential, p = 0.01).

Conclusions

We successfully implemented and tested a T_2 mapping methodology in which magnetization preparation is alternated. The *in vivo* T_2 maps demonstrate that the alternated acquisition intrinsically aligns its sources images, resulting in a larger available myocardial surface, which in turn may allow for more accurate T_2 value quantification.

¹Radiology, University Hospital (CHUV), and University of Lausanne (UNIL), Lausanne, Switzerland

Full list of author information is available at the end of the article

Figure 1 a) Schematic of the alternating acquisition pattern. The T_2 Prep duration is alternated between 60, 30 and 0 (no T_2 Prep) ms from heartbeat to heartbeat. All images are acquired in an interleaved fashion and on average experience similar motion. b) Schematic of the conventional sequential acquisition pattern. The T_2 Prep duration is changed only after acquisition of an image. This approach may be more vulnerable to irregular heart rates or respiration patterns. c) Simulations of stability of fitted T_2 values for both methods against heart rate variation. For an input T_2 of 45 ms, both the alternating acquisition (solid line) and the sequential acquisition (dashed line) result in a T_2 variation of \sim 3 ms over the range of physiological heart rates.

Figure 2 T₂ map of volunteer acquired with the alternating (a) and sequential (b) method. Note that consistent with the quantitative findings, the antero-lateral myocardium is thicker when acquired with the alternating method (arrows).

Funding

N/A.

Authors' details

¹Radiology, University Hospital (CHUV), and University of Lausanne (UNIL), Lausanne, Switzerland. ²Center for Biomedical Imaging (CIBM), Lausanne, Switzerland.

Published: 16 January 2014

doi:10.1186/1532-429X-16-S1-P28

Cite this article as: Feliciano et al.: Radial cardiac T₂ mapping with alternating T₂ preparation intrinsically introduces motion correction. Journal of Cardiovascular Magnetic Resonance 2014 16(Suppl 1):P28.