

POSTER PRESENTATION

Open Access

Quantitative comparison of 2D and 3D late gadolinium enhancement MR imaging for cardiomyopathies

Fabian Morsbach^{1*}, Sonja Gordic¹, Robert Götti¹, Markus Niemann², Hatem Alkadhi¹, Gruner Christiane², Robert Manka²

From 17th Annual SCMR Scientific Sessions New Orleans, LA, USA. 16-19 January 2014

Background

LGE is widely used as a means to quantify scar or fibrotic tissue in patients suffering from cardiomyopathies. In clinical routine 2D data acquisition is most commonly practiced, albeit having the drawback of multiple breath-holds and long acquisition times. 3D acquisition can significantly reduce acquisition time. This leads to shortened scan time and a more efficient use of available MRI resources. So our purpose was to determine whether the quantification of myocardial fibrosis in patients with Fabry disease and hypertrophic cardiomyopathy (HCM) using a late gadolinium enhancement (LGE) single-breath-hold three-dimensional (3D) inversion recovery magnetic resonance (MR) imaging sequence is comparable with a clinically established two-dimensional (2D) multi-breath-hold sequence.

Methods

40 consecutive patients (18 men; mean age 50 \pm 17) with either Fabry disease (n = 18) or HCM (n = 22) were enrolled in this prospective study. Studies were conducted on a 1.5-T clinical MR imaging system. Spatial resolution was the same for 3D and 2D images (field-of-view, 350 \times 350 mm2; in-plane-resolution, 1.2 \times 1.2 mm2; section-thickness, 8 mm). Datasets were analyzed for subjective image and quantitative evaluation of myocardial mass (grams), fibrotic mass (grams) and total fibrotic tissues percentage. Statistical analysis included Wilcoxon-signed-rank test, student's t-test for paired samples and Bland-Altman analysis.

¹Institute for Diagnostic and Interventional Radiology, University Hospital Zurich, Zurich, Switzerland

Full list of author information is available at the end of the article

Results

There was no significant difference in subjective image quality between acquisitions (P > 0.1) for either disease. In patients with Fabry disease there was no significant differences in myocardial mass between 3D (100.7 g ± 30.8 g) and 2D acquisition(99.9 g \pm 31.9 g; P = 0.55), as well as for fibrous tissue mass(3.9 g \pm 6.4 g vs 4.0 \pm 6.4 g; P = 0.89) and total fibrous percentage (3.4% \pm 5.5% vs 3.4 ± 5.5 ; P = 0.89). Bland-Altman analysis showed good agreement between 3D and 2D datasets for myocardial mass(mean difference: 0.8 g; limits of agreement: -10.2 g - 11.8 g), fibrous tissue mass (mean difference: -0.02 g; limits of agreement: -1.45 g-1.41 g), total fibrous percentage (mean difference:0.02%; limits of agreement: -1.31%-1.35%). In patients with HCM there was no significant differences in myocardial mass between 3D (115.5 g ± 33.3 g) and 2D acquisition (116.7 g \pm 33.6 g; P = 0.48), as well as for fibrous tissue mass (5.6 g \pm 8.6 g vs 5.7 g \pm 8.7 g; P = 0.6) and total fibrous percentage (4.3% \pm 6.4% vs $4.3\% \pm 6.5\%$; P = 0.89). Bland-Altman analysis showed good agreement between 3D and 2D datasets for myocardial mass (mean difference: -1.2 g; limits of agreement:-16.1 g -13.7 g), fibrous tissue mass (mean difference -0.08 g; limits of agreement: -1.33 g - 1.17 g), total fibrous percentage (mean difference:-0.01 g; limits of agreement:-1.01 g-0.99 g). Acquisition time was significantly shorter for 3D sequences (24.9 seconds ± 5.2 seconds) as compared to 2D sequence $(349.1 \text{ seconds} \pm 62.3 \text{ seconds}, P < 0.001).$

Conclusions

3D LGE imaging enables comparable quantification of fibrous myocardial tissue compared to a 2D sequence at a faster acquisition rate.

Morsbach et al. Journal of Cardiovascular Magnetic Resonance 2014, **16**(Suppl 1):P330 http://www.jcmr-online.com/content/16/S1/P330

Funding

Nothing to disclose.

Authors' details

¹Institute for Diagnostic and Interventional Radiology, University Hospital Zurich, Zurich, Switzerland. ²Cardiology Clinic, University Hospital, Zurich, Switzerland.

Published: 16 January 2014

doi:10.1186/1532-429X-16-S1-P330

Cite this article as: Morsbach *et al.*: Quantitative comparison of 2D and 3D late gadolinium enhancement MR imaging for cardiomyopathies. *Journal of Cardiovascular Magnetic Resonance* 2014 **16**(Suppl 1):P330.

Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

Submit your manuscript at www.biomedcentral.com/submit

