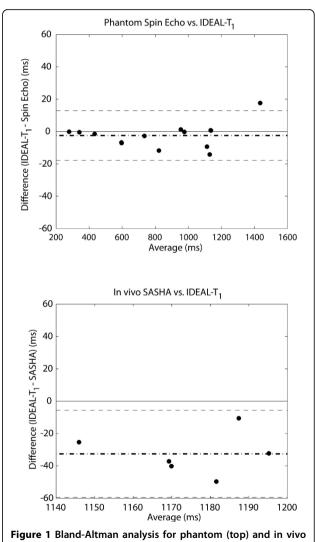


POSTER PRESENTATION

Open Access

Fat-water separated myocardial T₁ mapping with IDEAL-T₁ saturation recovery gradient echo imaging

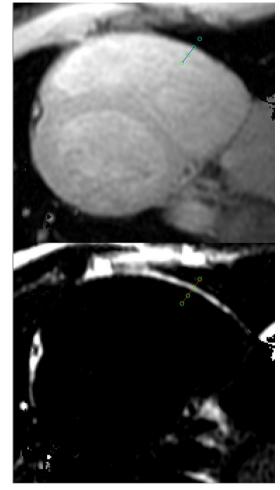
Joseph J Pagano*, Kelvin Chow, Ray Yang, Richard B Thompson


From 17th Annual SCMR Scientific Sessions New Orleans, LA, USA. 16-19 January 2014

Background

Myocardial T_1 mapping is emerging as powerful tool for tissue characterization, however the presence of intramyocardial or epicardial fat can contaminate T₁ values through partial voluming, or preclude analysis, particularly in areas of infarct or thin walled myocardium, such as the right ventricle. We propose and evaluate a new combined fat-water separated saturation-recovery imaging sequence (IDEAL-T₁) for water-separated T₁ mapping.

Methods


The IDEAL-T₁ approach combines a gated, segmented multi-echo gradient recalled echo readout for fat-water separation, based on the "iterative decomposition of water and fat with echo asymmetry and least squares estimation" (IDEAL) method[1], with saturation recovery T_1 mapping[2-4]. Images at 4 saturation recovery (TS) times were acquired at a basal slice in diastole over 2 breathholds; one for a non-saturation prepared image, with >4 seconds of recovery between segments, and another for 3 images with incremental TS times. Typical parameters: (Siemens Sonata, 1.5T) TE 2.06, 4.43, 6.8 ms, TR 8.59, flip angle 20°, TS 302-701 ms, FOV 360×259 mm, acquisition matrix 256×129 , phase resolution 70%, 6/8 partial Fourier, 27 views per segments (4 shots per image). Data from water-separated images was scaled by the non-saturated image and fit to a 1-parameter mono-exponential curve, using a Bloch equations simulation look-up table approach to correct for readout-effects on apparent saturation efficiency. In phantom experiments, with a physiologic range of

(bottom) experiments

Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada

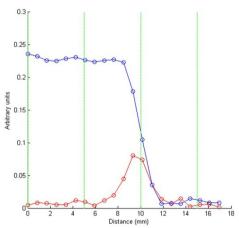


Figure 2 IDEAL-T₁ images showing typical water separated image (top), fat separated image (middle), and signal profile (bottom) across the right ventricle free wall. A small rim of fat is not otherwise visible unless noted on fat separated image.

 T_1 and T_2 values (14 phantoms), IDEAL- T_1 was validated against an inversion spin-echo sequence. In-vivo evaluation of myocardial T_1 was completed in 6 healthy

individuals and compared to a single-shot saturation recovery sequence (SASHA)[2] in the left ventricle.

Results

Simulations reveal negligible dependence on T_1 , T_2 , and off-resonance (up to 250 Hz), but dependence on B1 errors and saturation efficiency. Phantom experiments show excellent correlation with spin-echo values (R2 0.9996, p < 0.0001) with a mean underestimation of 2.4 ms (Figure 1) and a standard deviation of the difference of 7.4 ms. In vivo evaluation shows a larger underestimation, with a mean difference of -32.5 ms (Figure 1) and a standard deviation of the difference of 12.3 ms. Sample fat and water separated images are shown in Figure 2, where a thin rim of RV fat is revealed on the fat image, and a fat and water profile through the wall illustrates the large region of fat and water overlap.

Conclusions

IDEAL- T_1 provides the benefit of fat-water separation with quantitative myocardial T_1 -mapping with a small underestimation in T_1 . Areas of thin myocardium, including the right ventricle, may benefit from resolving zones of partial voluming with fat by having water only images for analysis.

Funding

The authors acknowledge financial support from CIHR, AIHS, WCHRI.

Published: 16 January 2014

References

- 1. Reeder: *JMRI* 2007.
- Chow: MRM 2013.
- 3. Higgins: Med Phys 2005
- Wacker: MRM 1999.

doi:10.1186/1532-429X-16-S1-P65

Cite this article as: Pagano *et al*: Fat-water separated myocardial T₁ mapping with IDEAL-T₁ saturation recovery gradient echo imaging. *Journal of Cardiovascular Magnetic Resonance* 2014 **16**(Suppl 1):P65.

Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

Submit your manuscript at www.biomedcentral.com/submit

