

WORKSHOP PRESENTATION

Open Access

Clinical evaluation of accelerated cardiac cine imaging using iterative k-t-sparse SENSE

Bradley D Allen^{1*}, Maria Carr¹, Michael O Zenge², Michaela Schmidt², Mariappan S Nadar³, Bruce S Spottiswoode⁴, Jeremy D Collins¹, James C Carr¹

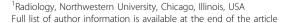
From 17th Annual SCMR Scientific Sessions New Orleans, LA, USA. 16-19 January 2014

Background

We sought to quantitatively and qualitatively evaluate a clinical implementation of accelerated MR acquisitions using iterative segmented k-t-sparse Cartesian SENSE balanced steady-state free-precession (SSFP) cinegraphic imaging.

Methods

IRB approval was obtained. Twenty patients (age: 54.8 ± 14 years, M:F = 15:5) undergoing non-emergent CMR assessment for myocardial pathology were consecutively recruited. Nine healthy volunteers (age: 44.3 ± 14 years, M:F = 6:3) were also imaged. CMR was performed at 1.5T (MAGNETOM Aera, Siemens Healthcare, Erlangen, Germany). The examination included acquisition of standard segmented SSFP (iPAT2) (GRAPPA accel factor 2, TR 40 msec, $2.1 \times 2.1 \times 10 \text{ mm}^3$) cine and two accelerated segmented SSFP acquisitions (TPAT accel factor 4, TR 37.7 msec, $2.1 \times 2.1 \times 6$ mm³), one with an investigational prototype inline iterative k-t-sparse SENSE reconstruction with L1 regularization along one spatial and temporal dimension (TPAT4_i) (1)and the other with conventional SENSE reconstruction (TPAT4). Each technique was used to acquire a three-(3Ch), four-chamber (4Ch), and short axis (SA) series in identical slice positions (Figure 1), with SA coverage of the entire left ventricle (LV) with 10 mm interslice gaps. Individual slice scan times were recorded. Quantitative LV functional analysis was performed. A reviewer blinded to acquisition type scored images for overall image quality, noise, and artifacts using a 5-point Likert


scale. Continuous variables were compared between groups using a paired t-test, and ordinal variables were compared using a Wilcoxon signed-rank test.

Results

In a combined analysis of patients and volunteers, there was no significant difference between LV ejection fraction between iPAT2 and TPAT4; (p = 0.48) or TPAT4 (p = 0.34). The iPAT2 technique found marginally lower end-diastolic volume (159 \pm 54 ml vs. 169 \pm 54 ml, p = 0.01), end-systolic volume (75 \pm 33 ml vs. 80 \pm 31 ml, p = 0.04), stroke volume (80 ± 35 ml vs. 89 ± 31 ml, p = 0.03) compared to TPAT4_i. Single-slice scan times in both TPAT4_i(3.29 \pm 0.6 sec) and TPAT4 (3.0 \pm 0.6 sec) acquisitions were significantly shorter relative to iPAT2 (8.4 \pm 1.7 sec, p < 0.001 for both). Qualitative review showed significantly higher image quality and lower noise using both iPAT2 and TPAT4, acquisitions relative to TPAT4 (quality: p < 0.001, noise: p < 0.001). The iPAT2 acquisition was scored higher than TPAT4; in quality (4.8 \pm 0.4 vs. 4.6 \pm 0.6, p = 0.005), noise $(4.9 \pm 0.3 \text{ vs. } 4.6 \pm 0.6, \text{ p} < 0.001)$, and artifact (4.8 ± 0.4) vs. 4.6 \pm 0.6, p = 0.04), although the magnitude of difference is relatively small. (Figure 2)

Conclusions

Acceleration using iterative k-t-sparse SENSE techniques can be successfully applied in CMR to reduce scan times by > 50% while maintaining diagnostic image quality and quantitative accuracy in LV systolic function assessment.

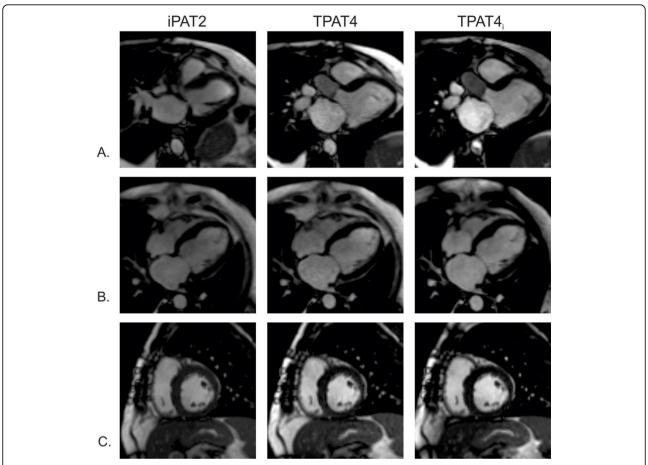
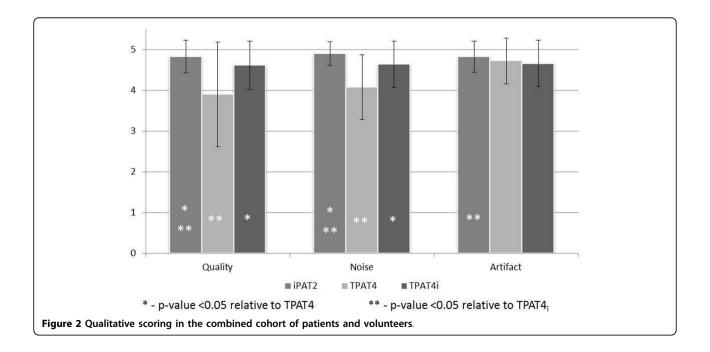



Figure 1 Example A) three-chamber, B) four-chamber, and C) mid-chamber short axis images in a patient undergoing CMR for aortic valve assessment using each acquisition technique.

Allen et al. Journal of Cardiovascular Magnetic Resonance 2014, **16**(Suppl 1):W13 http://www.jcmr-online.com/content/16/S1/W13

Authors' details

¹Radiology, Northwestern University, Chicago, Illinois, USA. ²Siemens AG Healthcare Sector, Erlangen, Germany. ³Siemens Corporate Technology, Princeton, New Jersey, USA. ⁴Siemens Healthcare USA, Inc., Chicago, Illinois, USA.

Published: 16 January 2014

Reference

1. Liu J, et al: ISMRM 20th Annual Meeting Melbourne, Australia; 2012, 4249.

doi:10.1186/1532-429X-16-S1-W13

Cite this article as: Allen *et al.*: Clinical evaluation of accelerated cardiac cine imaging using iterative k-t-sparse SENSE. *Journal of Cardiovascular Magnetic Resonance* 2014 **16**(Suppl 1):W13.

Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

Submit your manuscript at www.biomedcentral.com/submit

