POSTER PRESENTATION

Open Access

Metabolic imaging of in vivo myocardium

Charles S Springer^{1,2*}, Craig S Broberg^{3,2}, William D Rooney^{1,2}

From 18th Annual SCMR Scientific Sessions Nice, France. 4-7 February 2015

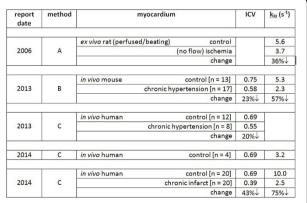
Background

The *equilibrium* cellular water efflux rate constant [kio; mean water lifetime inverse] from contrast agent [CA]enhanced MRI measures on-going cellular Na⁺,K⁺-ATPase activity [turnover]. Good literature [4 different labs] agreement shows substantial kio decreases in myocardial ischemia, hypertension, or infarct regions (Table). The 3 methods used differ in extracellular ("outside") CAo level manipulation to change the MR shutter-speed relative to k_{io} and the MR exchange condition reached: A) CA_o steady-state, slow-exchange-regime; B) CAo titration, fastexchange-regime [FXR]; and C) CA_o wash-out, FXR. The independent intracellular volume fraction [ICV] - cell density•volume product and ≈ 1 - ECV [extracellular volume fraction] - also decreases in pathology. We hypothesize that k_{io} mapping shows metabolic compromise most effectively. We report initial experience with tissue near a repaired ventricular septal defect [VSD].

Methods

We acquired serial 1.5T $^{1}H_{2}O$ T_{1} -weighted data from a 27 yo male before and 3 times after a bolus IV 0.15 mmol/kg CA [Omniscan] injection. Quantitative Look-Locker T_{1} measurements [non-selective inversion, 21 recovery times] imaged an 8 mm slice with a mid-ventricular short axis location inferior to the VSD patch. Method C (CA $_{0}$ washout, FXR) determined k_{io} and ICV values in six LV wall segments.

Results


The Figure shows a post-CA T_1 -w image: the endo- and epicardial LV wall edges as bright orange and green, respectively [light orange circle, an LV ROI]. Segmental ICV and k_{io} values are given (yellow). Segments S5 and S6 comprise the septum. The ICV values for segments S1 - S4 are reasonable for normal myocardium (Table). Thus, we

have indicated (*) a control myocardial k_{io} value [5 s⁻¹, Table], since the CA wash-out data quantity [3 points] and quality from these normal myocardium segments yielded insufficient precision. Interestingly, the k_{io} value is reduced [4.5 s⁻¹] in segment S6, and dramatically so [1.7 s⁻¹; 66% \downarrow] in segment S5, immediately inferior to the VSD patch.

Conclusions

The k_{io} biomarker is a sensitive measure of on-going myocardial metabolic activity. Our result suggests that tissue nearby a VSD patch can be, or become, metabolically compromised.

The ultimate goal is pixel-wise $k_{\rm io}$ and ICV maps. [Here, nominal voxels are $2x2x8~mm^3=32~\mu L$.] For this, one needs data with good S/N and more than 3 wash-out points. Also, method C has systematic error absent in methods A and B, which cannot be used for humans. It assumes the CA_o concentration equals that of CA_p [in plasma] during wash-out. This is invalid for finite CA intravasation kinetics, which may be particularly slow in myocardial lesions due to common reduced

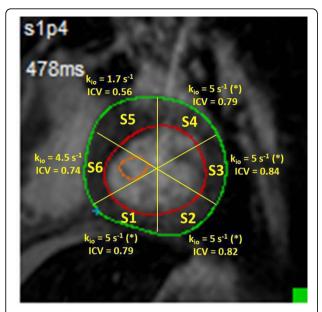


Figure 1 Literature reports of active trans-membrane water cycling $[k_{io}]$ and intracellular volume fraction [ICV] values in normal and pathological myocardia.

Full list of author information is available at the end of the article

¹Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR, USA

Figure 2 Short axis T_1 -w image slice inferior to VSD patch. The k_{io} and ICV values of six LV wall segments are given. k_{io} and ICV are reduced (66% and 30%, respectively) in segment S5,immediately below the patch.

vascularization. Possible k_{io} and ICV underestimations can be corrected using K^{trans} [the CA extravasation transfer constant] from the bolus tissue wash-in time-course to calculate the CA intravasation rate constant.

Funding

NIH: RO1-NS040801.

Authors' details

¹Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR, USA. ²Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, USA. ³Division of Cardiovascular Medicine, Oregon Health & Science University, Portland, OR, USA.

Published: 3 February 2015

doi:10.1186/1532-429X-17-S1-P251

Cite this article as: Springer *et al.*: **Metabolic imaging of** *in vivo* **myocardium.** *Journal of Cardiovascular Magnetic Resonance* 2015 **17**(Suppl 1): P251.

Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

Submit your manuscript at www.biomedcentral.com/submit

