

## **POSTER PRESENTATION**

**Open Access** 

# Comparison of great artery dimensions in 3-D dual-phase SSFP, compared with 3D CE-MRA and phase-contrast imaging (magnitude image)

Aimin Sun<sup>2</sup>, Srinivas Ananth Narayan<sup>1\*</sup>, Gerald F Greil<sup>1</sup>, Tarique Hussain<sup>2</sup>, Kuberan Pushparajah<sup>2</sup>, Aaron Bell<sup>1</sup>, Sujeev Mathur<sup>1</sup>, Reza Razavi<sup>1</sup>

From 18th Annual SCMR Scientific Sessions Nice, France. 4-7 February 2015

### **Background**

The dimensions of great vessels are measured in different methods in different institutes. The purpose of this study was to evaluate the benefits of 3D dual phase steady-state free-precession(3D-DP SSFP)for measuring great arteries dimension, compared with 3D contrastenhanced magnetic resonance angiography (3D CE-MRA) and 2D phase contrast imaging (Magnitude image) (2DPC-MI), in order to find which was the most suitable and reproducible technique for follow-up.

#### **Methods**

29 patients with repaired Tetralogy of Fallot or complete transposition of the great arteries after arterial switch operation (mean age 6.5yrs; range 6m to 25yrs) were included in the study. Cross-sectional diameter and area measurements were taken of the ascending aorta (Ao), main pulmonary (MPA) and branch pulmonary arteries (BPA) by using 3D DP SSFP, 3D CE-MRA and magnitude image of 2DPC-MI. Image quality was scored by a five-point scale (0 = invisible to 4 = excellent). Statistical comparison between 3D DP SSFP and other two techniques (2DPC-MI and 3D CE-MRA) was performed by using paired-t tests and Intraclass correlation coefficient.

#### **Results**

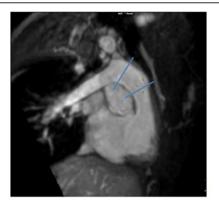

All great artery cross-sectional measurements were significantly (P < 0.001) greater in systole than in diastole. Measurements (diameter and area) of great arteries were greatest for 2DPC-MI, followed by 3D SSFP in systole and 3D CE-MRA, and smallest for 3D DP SSFP in



Figure 1

<sup>&</sup>lt;sup>1</sup>Paediatric Cardiology, Evelina London Children's Hospital, Harrow, UK Full list of author information is available at the end of the article








Figure 2

diastole. There was no significant difference of aortic measurements between 3D DP SSFP in systole and 3D CE-MRA, but significance was observed between 3D DP SSFP in systole and 2D PC-MI (P < 0.05). The measurements of MPA and BPA showed no significant difference for 3D DP SSFP in systole compared to other two techniques. Intra-observer agreement of aortic measurements was uniformly >0.95, with 2DPC-MI being the best, followed closely by 3D DP SSFP in systole, and 3D CE-MRA being the worst. The average image quality of 3D DP SSFP and 2DPC-MI were ≥3. But the image quality was significantly poorer for 3D CE-MRA compared to other two techniques (P < 0.001).

#### Conclusions

All Ao and PA cross-sectional measurements were significantly (P < 0.001) greater in systole than in diastole. Measurements of Ao and PA were greatest for 2DPC-MI, followed by 3D SSFP in systole and 3D CE-MRA, and smallest for 3D DP SSFP in diastole. There was no significant difference of aortic measurements between 3D DP SSFP in systole and 3D CE-MRA, but significance was observed between 3D DP SSFP in systole and 2D PC-MI (P < 0.05). The measurements of MPA and BPAs showed no significant difference for 3D DP SSFP in systole compared to other two techniques. Intra-observer agreement of Ao measurements was uniformly >0.95, with 2D PC-MI being the best, followed closely by 3D DP SSFP in systole, and 3D CE-MRA being the worst. The image quality of 3D DP SSFP and 2D PC-MI scored≥3. But the image quality was significantly poorer for 3D CE-MRA compared to other two techniques (P < 0.001).

#### Funding

The first author recieved an educational grant from Philips Healthcare.

#### Authors' details

<sup>1</sup>Paediatric Cardiology, Evelina London Children's Hospital, Harrow, UK. <sup>2</sup>Diagnostic Imaging, Shanghai Children's Medical Centre, Shanghai, China.

Published: 3 February 2015

#### doi:10.1186/1532-429X-17-S1-P44

Cite this article as: Sun et al.: Comparison of great artery dimensions in 3-D dual-phase SSFP, compared with 3D CE-MRA and phase-contrast imaging (magnitude image). Journal of Cardiovascular Magnetic Resonance 2015 17(Suppl 1):P44.

# Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

Submit your manuscript at www.biomedcentral.com/submit

