

# **WALKING POSTER PRESENTATION**

**Open Access** 

# Reproducibility of phase-contrast MRI in the coronary artery: towards noninvasive pressure gradient measurement and quantification of fractional flow reserve

Zixin Deng<sup>1,2\*</sup>, Qi Yang<sup>1</sup>, Xiaoming Bi<sup>3</sup>, Zhaoyang Fan<sup>1</sup>, Debiao Li<sup>1,2</sup>

From 18th Annual SCMR Scientific Sessions Nice, France. 4-7 February 2015

# **Background**

Fractional Flow Reserve (FFR) is an invasively determined index of the functional severity of an intermediate coronary stenosis by measuring the pressure drop across the lesion [1]. Noninvasive pressure gradient ( $\Delta P$ ) measurements using phase-contrast (PC)-MRI have been attempted in the aorta, carotid, and renal arteries [2-4]. The purpose of this study is to assess the reproducibility of PC-MRI and noninvasive  $\Delta P$  calculations in the coronary artery, which is relevant for establishing the robustness of the noninvasive FFR technique.

### **Methods**

2D PC-MRI was used to acquire two-cardiac-phase data at mid-diastole and end-expiration via ECG-triggering and navigator-gating on 3T MAGNETOM Verio (Siemens). K-space phase-encoding ordering is designed to allow offline view sharing [5], which is applied in cases where the acquisition window exceeds the quiescent period (~100ms). The sequence measures the velocity field ( $v_x$ ,  $v_y$ , v<sub>z</sub>) of a single cross-section per acquisition and 4-5 consecutive slices were obtained in the proximal LAD. Reproducibility was assessed with two repeat scans on 4 healthy subjects. VENC ranged 30-45 cm/s for each flow encoding direction was determined from a VENC scout scan. The Navier-Stokes equations were used to derive  $\Delta P$  [6]. In addition, a flow phantom (gadolinium-doped water flow at 300 mL/min in a silicone tubing of 4.8mm ID) with 40% stenosis (VENC=130z30xy cm/s) was likewise tested for reproducibility. Imaging parameters were: in-plane resolution = 0.58-0.67mm, slice thickness = 3.2 mm, flip angle = 15°, 65-71 ms/phase with the first phase strictly coinciding with the quiescent period, scan time = 1-3 min per slice. Absolute maximum and averaged velocities at each slice in all three directions and the  $\Delta P$  between adjacent slices obtained from both scans were statistically compared via intra-class correlation (ICC).

## **Results**

Volunteer studies: averaged maximum through-plane velocity over all healthy volunteers was  $16.5\pm4.0$  cm/s. A total of 19 slices were acquired from all subjects. For velocity measurements, excellent correlations were seen in the through-plane velocities  $(v_z)$ , with ICCs of 0.93/0.96 and slightly lower in  $v_x$  and  $v_y$  with ICCs of 0.83/0.86 and 0.80/0.78 for cardiac phases 1 and 2, respectively. For  $\Delta Ps$ , ICC was 0.51 with an average of  $0.1039\pm0.28$  mmHg among all subjects. Phantom studies: stenosis with 40% narrowing showed excellent correlations in all velocity directions and  $\Delta Ps$  (table 1).

# **Conclusions**

Our preliminary results suggest that the noninvasive quantification of flow velocities and  $\Delta Ps$  are reproducible in the coronary arteries, demonstrating the robustness and feasibility of 2D PC-MRI. Patient studies are underway to determine  $\Delta P$  and FFR thresholds between healthy and patient populations. Further technical improvements are warranted to reduce noise and improve reproducibility.

# **Funding**

N/A.

<sup>1</sup>Cedars Sinai Medical Center, Los Angeles, CA, USA Full list of author information is available at the end of the article



Table 1 Intra-Class Correlation (ICC) between two scans.

|            | Velocity Encoding Direction | Averaged Velocity |         | Absolute Maximum Velocity |         | Pressure Gradient (ΔP) |
|------------|-----------------------------|-------------------|---------|---------------------------|---------|------------------------|
|            |                             | Phase 1           | Phase 2 | Phase 1                   | Phase 2 | r = 0.508 p<0.05       |
| Volunteers | Z                           | 0.932             | 0.968   | 0.935                     | 0.959   |                        |
|            | X                           | 0.578             | 0.447   | 0.828                     | 0.861   |                        |
|            | Υ                           | 0.931             | 0.918   | 0.804                     | 0.779   | <del></del>            |
| Phantom    | Z                           | 0.992             |         | 0.988                     |         | r = 0.768 p<0.05       |
|            | X                           | 0.918             |         | 0.934                     |         | <del></del>            |
|            | Υ                           | 0.979             |         | 0.969                     |         |                        |

#### Authors' details

<sup>1</sup>Cedars Sinai Medical Center, Los Angeles, CA, USA. <sup>2</sup>Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA. <sup>3</sup>R&D, Siemens Healthcare, Los Angeles, CA, USA.

#### Published: 3 February 2015

#### References

- 1. Pijls, et al: NEJM 1996.
- 2. Bock, et al: MRM 2011.
- 3. Lum, et al: RY 2007.
- 4. Bley, et al: RY 2011.
- 5. Deng, et al: ISMRM 2014.
- 6. Yang, et al: MRM 1996.

#### doi:10.1186/1532-429X-17-S1-Q11

Cite this article as: Deng et al.: Reproducibility of phase-contrast MRI in the coronary artery: towards noninvasive pressure gradient measurement and quantification of fractional flow reserve. Journal of Cardiovascular Magnetic Resonance 2015 17(Suppl 1):Q11.

# Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

Submit your manuscript at www.biomedcentral.com/submit

